46. G ; $a=-5$, so as the absolute value of y decreases, y is actually increasing.
47. $\mathrm{D} ; 865(1.05)^{3}=\$ 1001.35$

48a. $y=a(1+r)^{t}$

$$
\begin{aligned}
& =1000(1+0.05)^{t} \\
& =1000(1.05)^{t}
\end{aligned}
$$

b. $1300=1000(1.05)^{t}$
$t \approx 5$; about 2005

CHALLENGE AND EXTEND

49. about 20 years

$$
\text { 50. } \begin{aligned}
y & =a(1+r)^{t} \\
1000 & =500(1.04)^{t} \\
t & \approx 18 \mathrm{yr} \\
\text { for } r & =0.08 \\
1000 & =500(1.08)^{t} \\
t & \approx 9 \mathrm{yr}
\end{aligned}
$$

51. $A=P(0.5)^{t}$
$10=80(0.5)^{t}$
$\quad t=3$
So, half-life $=\frac{300}{t}=100 \mathrm{~min}$ or 1 h 40 min
52. $A=P(0.5)^{t}$
$15=P(0.5)^{\frac{6}{2}}$
$P=120 \mathrm{~g}$
53. $A=P\left(1+\frac{r}{n}\right)^{n t}$
$250,000=P(1+0.013)^{(4 \cdot 8)}$
$P=\$ 225,344$
54.

Month	Balance (\$)	Monthly Payment (\$)	Remaining Balance (\$)	1.5\% Finargee (\$) Charge	New Balance (\$)
1	200	30	170	2.55	172.55
2	172.55	30	142.55	2.14	144.69
3	144.69	30	114.69	1.72	116.41
4	116.41	30	86.41	1.30	87.71
5	87.71	30	57.71	0.87	58.58
6	58.58	30	28.58	0.43	29.01
7	29.01	29.01	0	0	0

b. Table shows balance is paid off in 7 months.
c. $(6(30)+29.01)-200=9.01$

9-4 LINEAR, QUADRATIC AND EXPONENTIAL MODELS

CHECK IT OUT!

1a. exponential

b. quadratic

2. Quadratic; for every constant change in the x-values of +1 , there is a constant second difference of -6 in the y-values.
3. The oven temperature decreases by $50^{\circ} \mathrm{F}$ every 10 minutes; $y=-5 x+375 ; 75^{\circ} \mathrm{F}$

THINK AND DISCUSS

1. No; most real-world data probably will not fit exactly into one of these patterns.
2. No; this is just a prediction based on the assumption that the observed trends will continue, which they may or may not do.
3.

EXERCISES

GUIDED PRACTICE

1. exponential

2. linear

3. quadratic

4. Quadratic; for every constant change of +1 in the x-values, there is a constant second difference of -1 in the y-values.
5. Exponential; for every constant change of +1 in the x-values, there is a constant ratio of 2 .
6. Linear; for every constant change of +1 in the x-values, there is a constant change of +2 in the y-values.
7. Grapes cost $\$ 1.79 / \mathrm{lb} ; y=1.79 x ; \$ 10.74$

PRACTICE AND PROBLEM SOLVING

8. quadratic

10. exponential

9. linear

11. Linear, for every constant change of +1 in the x-values, there is a constant change of -1 in the y-values.
12. Quadratic, for every constant change of +1 in the x-values, there is a constant second difference of -2 in the y-values.
13. Exponential, for every constant change of +1 in the x-values, there is a constant ratio of 0.5 in the y-values.
14. The company's sales are increasing by 20% each year; $y=25,000(1.2)^{x} ; \$ 154,793.41$
15. $I=6 k$; linear with $m=6$ and $b=0$
16. Linear; for every weekly interval, the height of the plant has a constant increase of 0.5 inches.
17. Linear; for each successive year, the number of games has a constant change of 0 .
18. Quadratic; for each successive time interval, the height of a ball has a constant second difference of -0.28 .
19. $y=0.2(4)^{x}$
20. $y=-\frac{1}{2} x+4$
21. linear
22. quadratic
23. Possible answer: $(0,3),(1,6),(2,12),(3,24)$; for a constant change in x of +1 , there is a common ratio of 2.
24. Possible answer: the first differences are constant, so there is no need to check the second differences. A linear function would best model the data.
25. Possible answer: make a table of ordered pairs and see whether the y-values show a pattern of constant second differences or constant ratios.
26a. college 1: linear because it has constant changes of $\$ 200$ each year; college 2: exponential because it has a constant yearly ratio of 1:1.1.
b. college 1: $y=200 x+2000$; college 2: $y=2000(1.1)^{x}$
c. Both have the same tuition (\$2000) in 2004.
d. For college 1, \$200 is added each year, so 2000 $+200=2200$. For college $2,10 \%$ is added each year, so $2000+(0.1)(2000)=2200$.
27. C ; the data is linear since it has a constant change in the y-values for each constant change in the x-values.
28. $\mathrm{F} ; 2 \%$ is a common ratio.
29. C; For every constant change of +1 in the x-values, there is a constant change of +2 in the y-values.

CHALLENGE AND EXTEND

30a.

Year	Value (\$)
0	18,000
1	15,120
2	$12,700.80$
3	$10,668.67$
4	8961.68

Year 0 is the year when the car is purchased.
d. $y=18,000(0.84)^{5 \frac{1}{2}}=\$ 6899.36$
e. $y=18,000(0.84)^{8}=\$ 4461.77$

31a. Possible answer: quadratic; the second differences are approximately constant at -2 .
b. about 48 kg
c. No; this quadratic model will begin to decrease although the dog's weight will either continue to grow or eventually remain constant.

9-5 COMPARING FUNCTIONS

CHECK IT OUT!

1. Slope: For Dave, use $(0,30)$ and $(1,42)$.
$\frac{42-30}{1-0}=12$. For Arturo, use $(0,24)$ and
$(1,32) \cdot \frac{32-24}{1-0}=8$. Dave is saving at a higher rate
(\$12/wk) than Arturo (\$8/wk); y-int.: The y-intercept
for Dave is $(0,30)$ and for Arturo is $(0,24)$. Dave
started with more money (\$30) than Arturo (\$24).
2. Average rate of change of Investment A: use (10, 17.91) and ($25,42.92$).
$\frac{42.92-17.91}{25-10} \approx 1.67$; A increased about
\$1.67/yr; Average rate of change of Investment B:
use $(10,17)$ and $(25,34) \cdot \frac{34-17}{25-10} \approx 1.13$;
B increased about \$1.13/yr.
3. Rosetta's new model:
\max ht.: $x=-\frac{b}{2 a}=-\frac{1.1}{2(-0.01)}=\frac{1.1}{0.02}=55$;
$y=-0.01(55)^{2}+1.1(55)=30.25 \mathrm{ft}$;
length: (x-intercepts)
$-0.01 x^{2}+1.1 x=0$
$-x(0.01 x-1.1)=0$
