46. G; a = -5, so as the absolute value of *y* decreases, *y* is actually increasing.

47. D;
$$865(1.05)^3 = $1001.35$$

48a. $y = a(1 + r)^{t}$ = 1000(1 + 0.05)^t = 1000(1.05)^t

b. $1300 = 1000(1.05)^t$ $t \approx 5$; about 2005

CHALLENGE AND EXTEND

49. about 20 years **50.**

1000 = 500(1.04)^t t ≈ 18 yr for r = 0.08 1000 = 500(1.08)^t t ≈ 9 yr 51. A = P(0.5)^t

 $y = a(1 + r)^{t}$

$$10 = 80(0.5)^{t}$$

$$t = 3$$

So, half-life = $\frac{300}{t}$ = 100 min or 1 h 40 min

52.
$$A = P(0.5)^t$$

 $15 = P(0.5)^{\frac{6}{2}}$

$$P = 120 \text{ g}$$

53.
$$A = P(1 + \frac{r}{n})^{m}$$

250,000 = $P(1 + 0.013)^{(4 \cdot 8)}$
 $P = $225,344$

54.	Month	Balance (\$)	Monthly Payment (\$)	Remaining Balance (\$)	1.5% Finance Charge (\$)	New Balance (\$)
	1	200	30	170	2.55	172.55
	2	172.55	30	142.55	2.14	144.69
	3	144.69	30	114.69	1.72	116.41
	4	116.41	30	86.41	1.30	87.71
	5	87.71	30	57.71	0.87	58.58
	6	58.58	30	28.58	0.43	29.01
	7	29.01	29.01	0	0	0

b. Table shows balance is paid off in 7 months.

c. (6(30) + 29.01) - 200 = 9.01

9-4 LINEAR, QUADRATIC AND EXPONENTIAL MODELS

CHECK IT OUT!

1a. exponential

- **2.** Quadratic; for every constant change in the *x*-values of +1, there is a constant second difference of -6 in the *y*-values.
- **3.** The oven temperature decreases by 50°F every 10 minutes; y = -5x + 375; 75°F

THINK AND DISCUSS

- **1.** No; most real-world data probably will not fit exactly into one of these patterns.
- 2. No; this is just a prediction based on the assumption that the observed trends will continue, which they may or may not do.

3. linear

_	y♠	X
-6	0	6
	-6-	•
	•	
	-12	

 Quadratic; for every constant change of +1 in the *x*-values, there is a constant second difference of -1 in the *y*-values.

- **5.** Exponential; for every constant change of +1 in the *x*-values, there is a constant ratio of 2.
- **6.** Linear; for every constant change of +1 in the *x*-values, there is a constant change of +2 in the *y*-values.
- **7.** Grapes cost \$1.79/lb; *y* = 1.79*x*; \$10.74

Holt McDougal Algebra 1

PRACTICE AND PROBLEM SOLVING

11. Linear, for every constant change of +1 in the x-values. there is a constant change of -1 in the y-values.

9. linear

- **12.** Quadratic, for every constant change of +1 in the x-values, there is a constant second difference of —2 in the y-values.
- **13.** Exponential, for every constant change of +1 in the x-values, there is a constant ratio of 0.5 in the v-values.
- 14. The company's sales are increasing by 20% each year; $y = 25,000(1.2)^{x}$; \$154,793.41
- **15.** l = 6k; linear with m = 6 and b = 0
- 16. Linear; for every weekly interval, the height of the plant has a constant increase of 0.5 inches.
- 17. Linear; for each successive year, the number of games has a constant change of 0.
- 18. Quadratic; for each successive time interval, the height of a ball has a constant second difference of -0.28.
- **20.** $y = -\frac{1}{2}x + 4$ **19.** $y = 0.2(4)^{x}$
- 21. linear

22. quadratic

- 23. Possible answer: (0,3), (1,6), (2,12), (3,24); for a constant change in x of +1, there is a common ratio of 2.
- 24. Possible answer: the first differences are constant, so there is no need to check the second differences. A linear function would best model the data.
- 25. Possible answer: make a table of ordered pairs and see whether the y-values show a pattern of constant second differences or constant ratios.
- 26a. college 1: linear because it has constant changes of \$200 each year; college 2: exponential because it has a constant yearly ratio of 1:1.1.
 - **b.** college 1: y = 200x + 2000; college 2: $y = 2000(1.1)^{x}$
 - c. Both have the same tuition (\$2000) in 2004.

- d. For college 1, \$200 is added each year, so 2000 +200 = 2200. For college 2, 10% is added each year, so 2000 + (0.1)(2000) = 2200.
- 27. C; the data is linear since it has a constant change in the *y*-values for each constant change in the x-values.
- 28. F; 2% is a common ratio.
- **29.** C; For every constant change of +1 in the x-values, there is a constant change of +2 in the y-values.

CHALLENGE AND EXTEND

30a.	Year	Value (\$)	
	0	18,000	
	1	15,120	
	2	12,700.80	
	3	10,668.67	
	4	8961.68	

b. exponential, for each successive year, the value decreases by 16%, the common ratio.

c. $v = 18,000(0.84)^{x}$

Year 0 is the year when the car is purchased.

d.
$$y = 18,000(0.84)^{5\frac{1}{2}} = $6899.36$$

e.
$$y = 18,000(0.84)^8 = $4461.77$$

- 31a. Possible answer: quadratic; the second differences are approximately constant at -2.
 - b. about 48 kg
 - c. No; this quadratic model will begin to decrease although the dog's weight will either continue to grow or eventually remain constant.

9-5 COMPARING FUNCTIONS

CHECK IT OUT!

- 1. Slope: For Dave, use (0, 30) and (1, 42). $\frac{42-30}{1-0} = 12$. For Arturo, use (0, 24) and (1, 32). $\frac{32-24}{1-0} = 8$. Dave is saving at a higher rate (\$12/wk) than Arturo (\$8/wk); y-int .: The y-intercept for Dave is (0, 30) and for Arturo is (0, 24). Dave started with more money (\$30) than Arturo (\$24).
- 2. Average rate of change of Investment A: use (10, 17.91) and (25, 42.92). $\frac{42.92 - 17.91}{25 - 10} \approx 1.67; \text{ A increased about}$

use (10, 17) and (25, 34). $\frac{34 - 17}{25 - 10} \approx 1.13;$ B increased about \$1.13/yr

3. Rosetta's new model:

max ht.:
$$x = -\frac{b}{2a} = -\frac{1.1}{2(-0.01)} = \frac{1.1}{0.02} = 55$$

 $y = -0.01(55)^2 + 1.1(55) = 30.25$ ft;
length: $(x$ -intercepts)
 $-0.01x^2 + 1.1x = 0$
 $-x(0.01x - 1.1) = 0$