TEST PREP

44. $\mathrm{D}: \frac{10}{5}=2 ; \frac{20}{10}=2 ; \frac{40}{20}=2$; there is a common ratio.
45. J; since $r=-4$ and $a_{1}=2$,
$\left(\frac{-8}{2}=-4 ; \frac{32}{-8}=-4 ; \frac{-128}{32}=-4\right)$
$a_{n}=2(-4)^{n-1}$
46. C; $r=2$ and $A_{1}=55$
$A_{n}=A_{a} r^{n-1}$
$A_{7}=A_{1} r^{6}$
$A_{7}=3520 \mathrm{~Hz}$

CHALLENGE AND EXTEND

47. $\frac{x^{2}}{x}=x ; \frac{x^{3}}{x^{2}}=x$
$r=x$ and $a_{1}=x ;$
$a_{4}=x(x)^{3}=x^{4}$
$a_{5}=x(x)^{4}=x^{5}$
$a_{6}=x(x)^{5}=x^{6}$
48. $\frac{6 x^{3}}{2 x^{2}}=3 x ; \frac{18 x^{4}}{6 x^{3}}=3 x$
$r=3 x$ and $a_{1}=2 x^{2}$;
$a_{4}=2 x^{2}(3 x)^{3}=54 x^{5}$
$a_{5}=2 x^{2}(3 x)^{4}=162 x^{6}$
$a_{6}=2 x^{2}(3 x)^{5}=486 x^{7}$
49. $\frac{1}{y^{2}} \div \frac{1}{y^{3}}=y ; \frac{1}{y} \div \frac{1}{y^{2}}=y$
$r=y$ and $a_{1}=\frac{1}{y^{3}}$
$a_{4}=\frac{1}{y^{3}}(y)^{3}=1$
$a_{5}=\frac{1}{y^{3}}(y)^{4}=y$
$a_{6}=\frac{1}{y^{3}}(y)^{5}=y^{2}$
50. $\frac{1}{x+1} \div \frac{1}{(x+1)^{2}}=x+1 ; 1 \div \frac{1}{x+1}=x+1$
$r=x+1$ and $a_{1}=\frac{1}{(x+1)^{2}}$
$a_{4}=\frac{1}{(x+1)^{2}}(x+1)^{3}=x+1$
$a_{5}=\frac{1}{(x+1)^{2}}(x+1)^{4}=(x+1)^{2}$
$a_{6}=\frac{1}{(x+1)^{2}}(x+1)^{5}=(x+1)^{3}$
51. $a_{10}=a_{1} r^{9}$
$a_{1}=\frac{a_{10}}{r^{9}}$
$a_{1}=\frac{0.78125}{(-0.5)^{9}}$
$a_{1}=-400$
52. No; each term of the sequence is found by multiplying the previous term by the common ratio $\frac{1}{2} \cdot \frac{1}{2}$ of any positive number is always another positive (nonzero) number.
53. $a_{n}=a_{1} r^{n-1}$
$r^{n-1}=\frac{a_{n}}{a_{1}}$
$(0.4)^{n-1}=\frac{0.057344}{14}$
$(0.4)^{n-1}=(0.4)^{6}$
Then, $n-1=6$

$$
n=7
$$

54. Susanna assumed the sequence was geometric with $r=2$. She used the formula to find $a_{8}=128$. Paul did not assume the sequence was geometric. Instead, he noticed a pattern of "add 1, add 2, and so on." He continued this pattern by adding 3, adding 4 , etc., until he got the 8th term of 29 . Both could be considered correct because it was not specified what type of sequence was given.

9-2 EXPONENTIAL FUNCTIONS

CHECK IT OUT!

1. $f(x)=8(0.75)^{x}$
$f(3)=8(0.75)^{3}$
$f(3)=8(0.421875)$
$f(3)=3.375 \mathrm{in}$.
2a. No; as the x-values change by a constant amount, the y-values are not multiplied by a constant amount.
b. Yes; as the x-values change by a constant amount, the y-values are multiplied by a constant amount.

3a. $y=2^{x}$

4a. $y=-6^{x}$

5a. $y=4\left(\frac{1}{4}\right)^{x}$

b. $y=0.2(5)^{x}$

b. $y=-3(3)^{x}$

b. $y=-2(0.1)^{x}$

6. $f(x)=12,330(0.869)^{x}$
$2000=12,330(0.869)^{x}$
$x=\log _{0.869}\left(\frac{2000}{12,330}\right)$
$x \approx 13$; after about 13 yrs

THINK AND DISCUSS

1. Possible answer: Make a table of values. Use x-values that change by the same amount each time as you move down the column. Then divide each y-value, starting with the second row, by the y-value before it. The quotient is the common ratio.
2.

EXERCISES GUIDED PRACTICE

1. No; there is no variable in the exponent.
2. $f(x)=50,000(0.975)^{x}$
$f(200)=50,000(0.975)^{200}$
$f(200)=316 ; 316$ lumens $/ \mathrm{m}^{2}$
3. No; as the x-values increase by a constant value, the y-values are not multiplied by a constant value.
4. Yes; as the x-values increase by a constant value, the y-values are multiplied by a constant value.
5. $y=3^{x}$

6. $y=10(3)^{x}$

7. $y=5^{x}$

8. $y=5(2)^{x}$

9. $y=-2(3)^{x}$

10. $y=-4(2)^{x}$

11. $y=-3(2)^{x}$

12. $y=-\left(\frac{1}{4}\right)^{x}$

13. $y=2\left(\frac{1}{4}\right)^{x}$

14. $y=2(3)^{x}$

15. $y=\left(\frac{1}{3}\right)^{x}$

16. $y=-2(0.25)^{x}$

17.

$$
\begin{aligned}
f(x) & =57.8(1.02)^{x} \\
200,000,000 & =57.8(1.02)^{x} \\
x & \approx 63 ;
\end{aligned}
$$

about 2023 (63 years after 1960)
PRACTICE AND PROBLEM SOLVING
18. $f(x)=27\left(\frac{2}{3}\right)^{x}$
$f(4)=27\left(\frac{2}{3}\right)^{4}$
$f(4)=27\left(\frac{16}{81}\right)$
$f(4)=5 \frac{1}{3} ; 5 \frac{1}{3} \mathrm{ft}$
20. $y=1.3(1.41)^{x}$
for $x=15$,
$y=1.3(1.41)^{15}$
$y \approx 225.02$; $225.02 \mathrm{in} . / \mathrm{min}$
21. Yes; as the x-values change by a constant amount, the y-values are multiplied by a constant amount.
22. No; as the x-values change by a constant amount, the y-values are not multiplied by a constant amount.
23. No; as the x-values change by a constant amount, the y-values are not multiplied by a constant amount.
24. Yes; as the x-values change by a constant amount, the y-values are multiplied by a constant amount.
25. $y=1.5^{x}$

27. $y=100(0.7)^{x}$

29. $y=-1(5)^{x}$

31. $y=4\left(\frac{1}{2}\right)^{x}$

26. $y=\frac{1}{3}(3)^{x}$

28. $y=-2(4)^{x}$

30. $y=-\frac{1}{2}(4)^{x}$

32. $y=-2\left(\frac{1}{3}\right)^{x}$

33. $y=0.5(0.25)^{x}$

34. $f(x)=42(1.41)^{x}$
$1,000=42(1.41)^{x}$

$$
x \approx 9 ; \text { about } 2009
$$

35. $y=(3.1 x+7)^{2}$ is not exponential since there is no variable in the exponent.
For $y=\left(\frac{1}{5}\right)(6)^{x}, y=7.2$ for $x=2$ and $y=43.2$ for $x=3$, hence $y=\left(\frac{1}{5}\right)(6)^{x}$ does not generate 38.4. For $y=4.8(2)^{x}, y=38.4$ for $x=3$; ans. $y=4.8(2)^{x}$

36a. $f(x)=20(1.2)^{x}$
$f(2)=20(1.2)^{2}$
$f(2)=28.8 ; \$ 28.80$
b. $f(x)=20(1.2)^{x}$
$100 \geq 20(1.2)^{x}$
$x \geq 9$; after 9 weeks
c. $f(x)=20(1.2)^{x}$
$f(0)=20(1.2)^{0}$
$f(0)=20 ; \$ 20$
d. increase $=\frac{f(n+1)}{f(n)}-1$

$$
\begin{aligned}
& \text { increase }=\frac{20(1.2)^{n+1}}{20(1.2)^{n}}-1 \\
& \text { increase }=.2 ; .2 \text { or } 20 \%
\end{aligned}
$$

37. If the value of b were 1 , the function would be constant. If the value of a were 0 , the function would be the constant function $y=0$.
38. Possible answer: The graphs have the same basic shape and the same y-intercept; each graph is steeper than the one before it.

39. Possible answer: The graphs have the same basic shape and the same y-intercept; each graph is steeper than the one before it.

40. $f(x)=4^{x}$
$f(3)=4^{3}$
$f(3)=64$
41. $f(x)=-(0.25)^{x}$
$f(1.5)=-(0.25)^{1.5}$
$f(1.5)=-0.125$
42. $f(x)=0.4(10)^{x}$
$f(-3)=0.4(10)^{-3}$

$$
f(-3)=0.0004 \text { or } 4 \times 10^{-4}
$$

43a. $\ln 2001, n=0$
$C=2000(1.08)^{0}$
$C=2000 ; \$ 2000$
b. increase $=\frac{2000(1.08)^{n+1}}{2000(1.08)^{n}}-1$
increase $=0.08 ; 8 \%$
c. For 2006, $n=5$
$C=2000(1.08)^{5}$
$C=2938.66 ; \$ 2938.66$
44. Possible answer: The following table shows how much money you could earn with each plan.

Year	Salary Plan A	Salary Plan B
0	$\$ 0$	$\$ 10,000$
1	$\$ 20,000$	$\$ 20,000$
2	$\$ 40,000$	$\$ 40,000$
3	$\$ 60,000$	$\$ 80,000$

Choose plan B because plan A doesn't pay anything for the first year and because after 3 years, plan B pays more money.
45. C; the other graphs do not increase exponentially.
46. $\mathrm{G} ; f(4)=15(1.4)^{2}=29.4$
47. D; $a_{1}=5, r=5$, hence $a_{n}=5(5)^{n-1}=5^{n}$

CHALLENGE AND EXTEND

48. $4^{x}=64$
$4^{x}=4^{3}$
49. $\left(\frac{1}{3}\right)^{x}=\frac{1}{27}$
$x=3$
$3^{-x}=3^{-3}$

$$
-x=-3
$$

$$
x=3
$$

50. $2^{x}=\frac{1}{16}$
$2^{x}=\frac{1}{24}$
$2^{x}=2^{-4}$
$x=-4$
51. The value of a is the y-intercept.

READY TO GO ON? Section A Quiz

1. $\frac{6}{3}=2 ; \frac{12}{6}=2 ; \frac{24}{12}=2$; the common ratio is 2 next 3 terms: $24(2)=48,48(2)=96$, and $96(2)=192$
2. $\frac{2}{-1}=-2 ; \frac{-4}{2}=-2 ; \frac{8}{-4}=-2$;
the common ratio is -2
next 3 terms: $8(-2)=-16,(-16)(-2)=32$, and $32(-2)=-64$
3. $\frac{-1200}{-2400}=\frac{1}{2} ; \frac{-600}{-1200}=\frac{1}{2} ; \frac{-300}{-600}=\frac{1}{2}$
next 3 terms: $-300\left(\frac{1}{2}\right)=-150,-150\left(\frac{1}{2}\right)=-75$, and $-75\left(\frac{1}{2}\right)=-37.5$
4. $a_{n}=a_{1} r^{n-1}$
$a_{8}=(2)(3)^{8-1}$
$a_{8}=4374$

$$
\text { 5. } \begin{aligned}
a_{1} & =1000, r=\frac{4}{5} \\
a_{n} & =a_{1} r^{n-1} \\
a_{7} & =1000\left(\frac{4}{5}\right)^{7-1} \\
a_{7} & =262.144 \mathrm{~cm}
\end{aligned}
$$

6. $f(x)=3(1.1)^{x}$
$f(4)=3(1.1)^{4}$
$f(4)=4.39$ in
7. $y=3^{x}$

8. $y=2(2)^{x}$

9. $y=-(0.5)^{x}$

10. $f(x)=40(0.8)^{x}$

$$
2=40(0.8)^{x}
$$

$$
x \approx 14
$$

after about 14 h

9-3 EXPONENTIAL GROWTH AND DECAY

CHECK IT OUT!

1. $y=a(1+r)^{t}$
$=1200(1.08)^{t}$;
In 2006, $y=1200(1.08)^{6}=\$ 1904.25$
2a. $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& =1200\left(1+\frac{0.035}{4}\right)^{4 t} \\
& =1200(1.00875)^{4 t,}
\end{aligned}
$$

After 4 years, $A=1200(1.00875)^{16}=\$ 1379.49$
b. $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& =4000\left(1+\frac{0.03}{12}\right)^{12 t} \\
& =4000(1.0025)^{12 t}
\end{aligned}
$$

After 8 years, $A=4000(1.0025)^{96}=\$ 5083.47$
3. $y=a(1-r)^{t}$

$$
\begin{aligned}
& =48,000(1-0.03)^{t} \\
& =48,000(0.97)^{t}
\end{aligned}
$$

After 7 years, $y=48,000(0.97)^{7}=38,783$
4a. $t=\frac{180 \text { years }}{30 \text { years }}$

$$
\begin{aligned}
& =6 \\
A & =P(0.5)^{\mathrm{t}} \\
& =100(0.5)^{6} \\
& =1.5625 \mathrm{mg}
\end{aligned}
$$

