44. Possible answer: The following table shows how much money you could earn with each plan.

Year	Salary Plan A	Salary Plan B	
0	\$0	\$10,000	
1	\$20,000	\$20,000	
2	\$40,000	\$40,000	
3	\$60,000	\$80,000	

Choose plan B because plan A doesn't pay anything for the first year and because after 3 years, plan B pays more money.

45. C; the other graphs do not increase exponentially.

46. G; $f(4) = 15(1.4)^2 = 29.4$

47. D; $a_1 = 5$, r = 5, hence $a_n = 5(5)^{n-1} = 5^n$

CHALLENGE AND EXTEND

48.
$$4^{x} = 64$$

 $4^{x} = 4^{3}$
 $x = 3$
49. $\left(\frac{1}{3}\right)^{x} = \frac{1}{27}$
 $3^{-x} = 3^{-3}$
 $-x = -3$
 $x = 3$

- **50.** $2^{x} = \frac{1}{16}$ $2^{x} = \frac{1}{24}$ $2^{x} = 2^{-4}$ x = -4
- **51.** The value of *a* is the *y*-intercept.

READY TO GO ON? Section A Quiz

1.
$$\frac{6}{3} = 2$$
; $\frac{12}{6} = 2$; $\frac{24}{12} = 2$; the common ratio is 2
next 3 terms: 24(2) = 48, 48(2) = 96, and
96(2) = 192
2. $\frac{2}{-1} = -2$; $\frac{-4}{2} = -2$; $\frac{8}{-4} = -2$;
the common ratio is -2
next 3 terms: $8(-2) = -16$, $(-16)(-2) = 32$, and
 $32(-2) = -64$
3. $\frac{-1200}{-2400} = \frac{1}{2}$; $\frac{-600}{-1200} = \frac{1}{2}$; $\frac{-300}{-600} = \frac{1}{2}$
next 3 terms: $-300(\frac{1}{2}) = -150, -150(\frac{1}{2}) = -75$,
and $-75(\frac{1}{2}) = -37.5$

4.
$$a_n = a_1 r^{n-1}$$

 $a_8 = (2)(3)^{8-1}$
 $a_8 = 4374$
5. $a_1 = 1000, r = \frac{4}{5}$
 $a_n = a_1 r^{n-1}$
 $a_7 = 1000 \left(\frac{4}{5}\right)^{7-1}$

6.
$$f(x) = 3(1.1)^{x}$$

 $f(4) = 3(1.1)^{4}$
 $f(4) = 4.39$ in

$$f(4) = 4.39$$
 in

8.
$$y = 2(2)^{x}$$

 $a_7 = 262.144$ cm

7. $y = 3^{x}$

10.
$$y = -(0.5)^x$$
 11.

11.
$$f(x) = 40(0.8)^{x}$$

 $2 = 40(0.8)^{x}$
 $x \approx 14;$
after about 14 h

9-3 EXPONENTIAL GROWTH AND DECAY

CHECK IT OUT!

1.
$$y = a(1 + r)^{t}$$

= 1200(1.08)^t;
ln 2006, $y = 1200(1.08)^{6} = \$1904.25$
2a. $A = P(1 + \frac{r}{n})^{nt}$
= 1200 $(1 + \frac{0.035}{4})^{4t}$
= 1200(1.00875)^{4t};
After 4 years, $A = 1200(1.00875)^{16} = \1379.49
b. $A = P(1 + \frac{r}{n})^{nt}$
= 4000 $(1 + \frac{0.03}{12})^{12t}$
= 4000(1.0025)^{12t}
After 8 years, $A = 4000(1.0025)^{96} = \5083.47
3. $y = a(1 - r)^{t}$
= 48,000(1 - 0.03)^t
= 48,000(0.97)^t
After 7 years, $y = 48,000(0.97)^{7} = 38,783$
4a. $t = \frac{180 \text{ years}}{30 \text{ years}}$
= 6
 $A = P(0.5)^{t}$
= 100(0.5)⁶
= 1.5625 mg

b.
$$t = \frac{5 \text{ weeks}}{5 \text{ days}}$$

= 7
 $A = P(0.5)^{t}$
= 100(0.5)⁷
= 0.78125 g

THINK AND DISCUSS

- 1. Possible answers: interest earned on an investment, population growth or decline, radioactive decay
- 2. increasing; by 2% per year
- **3.** An exponential growth function has the form $y = a(1 + i)^t$. The base (1 + i) corresponds to the base *b*. The exponent *t* corresponds to the exponent *x*. An exponential decay function has the form

 $y = a(1 - t)^{t}$. The base (1 - t) corresponds to the base *b*. The exponent *t* corresponds to the exponent *x*.

EXERCISES

GUIDED PRACTICE

1. exponential growth, since 2 > 1.

2. $y = a(1 + r)^{t}$ $= 12,000(1 + 0.06)^{t}$ $= 12,000(1.06)^{t}$ After 4 years, $y = 12,000(1.06)^4 = $15,149.72$ **3.** $y = a(1 + r)^{t}$ $= 300(1 + 0.08)^{t}$ $= 300(1.08)^{t}$ After 5 years, $y = 300(1.08)^5 = 441$ $\mathbf{4.} \ \mathbf{A} = P \Big(1 + \frac{r}{n} \Big)^{nt}$ $= 1500 \left(1 + \frac{0.035}{1}\right)^t$ = 1500(1.035)After 4 years, $A = 1500(1.035)^4 = 1721.28 **5.** $A = P(1 + \frac{r}{n})^{nt}$ $=4200\left(1+\frac{0.028}{4}\right)^{4t}$ $= 4200(1.007)^{4t}$ Ater 6 years, $A = 4200(1.007)^{24} = 4965.43

6. $y = a(1 - r)^{t}$ $= 18,000(1 - 0.12)^{t}$ $= 18,000(0.88)^{t}$ After 10 years, $y = 18,000(0.88)^{10} = 5013.02 7. $y = a(1 - r)^{t}$ $= 10(1 - 0.16)^{t}$ $= 10(0.84)^{t}$ After 4 hours, $y = 10(0.84)^4 = 4.98$ mg 9. $t = \frac{156 \text{ days}}{52 \text{ days}}$ **8.** $t = \frac{1 \text{ hr}}{20 \text{ min}}$ = 3 $A = P(0.5)^{t}$ $= 44(0.5)^{3}$ = 3 $A = P(0.5)^{t}$ $= 30(0.5)^3$ = 3.75 g $= 5.5 \, q$ PRACTICE AND PROBLEM SOLVING **10.** $y = a(1 + r)^{t}$ $= 149.000(1.06)^{t}$ After 7 years, $y = 149,000(1.06)^7 = $224,040.91$ **11.** $y = a(1 + r)^{t}$ $= 1600(1 + 0.03)^{t}$ $= 1600(1.03)^{t}$ After 10 years, $y = 1600(1.03)^{10} = 2150$ **12.** $A = P(1 + r)^{t}$ $= 700(1 + 0.012)^{t}$ $= 700(1.012)^{t}$ After 8 years, $A = 700(1.012)^8 = 770.09 **13.** $y = P(1 + r)^t$ $= 30(1 + 0.078)^{t}$ $= 30(1.079)^{t}$ After 6 years, $y = 30(1.078)^6 = 47$ members **14.** $A = P(1 + \frac{r}{n})^{nt}$ $= 28,000(1 + 0.04)^{t}$ $= 28,000(1.04)^{t}$ After 5 years, $A = 28,000(1.04)^5 = $34,066.28$ **15.** $A = P(1 + \frac{r}{n})^{nt}$ $= 7000 \left(1 + \frac{0.03}{4}\right)^{4t}$ $= 7000(1.0075)^{4t}$ After 10 years, $A = 7000(1.0075)^{40} = 9438.44 **16.** $A = P(1 + \frac{r}{n})^{nt}$ $= 3500 \left(1 + \frac{0.018}{12}\right)^{12t}$ $= 3500(1.0015)^{12t}$ After 4 years, $A = 3500(1.0015)^{48} = 3761.09 **17.** $A = P(1 + \frac{r}{n})^{nt}$ $= 12,000(1 + 0.026)^{t}$ $= 12,000(1.026)^{t}$ After 15 years, $A = 12,000(1.026)^{15} = $17,635.66$ **18.** $y = a(1 - r)^{t}$ $= 18,000(1 - 0.02)^{t}$ $= 18,000(0.98)^{t}$ After 6 years, $y = 18,000(0.98)^6 = 15,945$

19.
$$y = a(1 - t)^{t}$$

 $= 58(1 - 0.1)^{t}$
 $= 58(0.9)^{t}$
After 8 years, $y = 58(0.9)^{8} = 24.97
20. $t = \frac{6 \text{ days}}{36 \text{ hours}}$
 $= \frac{144 \text{ hours}}{36 \text{ hours}}$
 $= 4$
 $A = P(0.5)^{t}$
 $= 80(0.5)^{4}$
 $= 5 \text{ g}$
21. growth; 61%, since $1 + r = 1.61$
22. decay; 90.2%, since $1 - r = 0.098$
23. decay; $33\frac{1}{3}$ %, since $1 - r = \frac{2}{3}$
24. growth; 50%, since $1 + r = \frac{3}{2}$
25. growth; 10%, since $1 + r = 1.1$
26. decay; 20%, since $1 - r = 0.8$
27. growth; 25%, since $1 - r = \frac{1}{2}$
29. $y = a(1 + t)^{t}$
 $= 58,000,000(1.001)^{t}$
After 3 years, $y = 58,000,000(1.001)^{3}$
 $= 58,174,174$
30. $y = a(1 + t)^{t}$
 $= 32,000(1.07)^{t}$
After 5 years, $y = 32,000(1.07)^{5} = $44,881.66$
31. $y = a(1 - t)^{t}$
 $= 8200(0.98)^{t}$
After 7 years, $y = 8200(0.98)^{7} = 7118.63
32. $y = a(1 - t)^{t}$
 $= 25,000(1 - 0.15)^{t}$
 $= 25,000(0.85)^{t}$
After 6 years, $y = 25,000(0.85)^{6} = 9428.74
33. $y = a(1 + t)^{t}$
 $= 970(1 + 0.012)^{t}$
 $= 970(1 + 0.012)^{t}$
 $= 970(1 - 0.012)^{t}$
 $= 970(1.012)^{t}$
After 5 years, $y = 970(1.012)^{5} = 1030$
34. $t = \frac{3500 \text{ years}}{570 \text{ years}}}$
 $= \frac{35}{57}$
 $A = P(0.5)^{t}$
 $= 15(0.5)^{\frac{35}{57}}$
 $= 9.80 \text{ g}$

35. B; possible answer: student B did not subtract the rate from 1.

36. No; possible answer; there is no value for *t* that would make (0.84)^{*t*} equal 0.

37.
$$y = a(1 + r)^{t}$$

 $600 = 300(1 + 0.04)^{t}$
 $2 = 1.04^{t}$
 $t \approx 18$ years

38a. $y = a(1 + r)^r$ = 20,000(1.09)^t

b. In 2008, t = 6, hence $y = 20,000(1.09)^6 = $33,542$

```
c. 2011
```

Year	Tuition (\$)	
2002	20,000	
2003	21,800	
2004	23,762	
2005	25,900.58	
2006	28,231.63	
2007	30,772.48	
2008	33,542.00	
2009	36,560.78	
2010	39,851.25	
2011	43,437.87	

39. In 10 years:
A:
$$600(1.05)^{10} = \$977.34$$

B: $500(1 + \frac{0.06}{4})^{40} = 500(1.015)^{40}$
 $= \$907.01$
A will have a larger balance.
In 20 years:
A: $600(1.05)^{20} = \$1591.98$
B: $500(1.015)^{80} = \$1645.33$
B will have a larger balance.

- **40.** 50 h; 15h
- **41.** The graph when *r* is 20% rises faster than when *r* is 10%. The greater the value of *r*, the faster the graph will rise.

- **42.** Possible answer: \$400 is invested at a rate of 8% compounded annually.
- **43.** Possible answer: The population is 800 and decreasing at a rate of 4% per year.
- **44.** No; possible answer: the sample doubles every minute, so the container is half full 1 minute before it is full. This would be after 5 min.
- **45.** D; $y = a(1 r)^{t}$ a = 500, 1 - r = 1 - 0.01 = 0.99

46. G; a = -5, so as the absolute value of *y* decreases, *y* is actually increasing.

47. D;
$$865(1.05)^3 = $1001.35$$

48a. $y = a(1 + r)^{t}$ = 1000(1 + 0.05)^t = 1000(1.05)^t

b. $1300 = 1000(1.05)^t$ $t \approx 5$; about 2005

CHALLENGE AND EXTEND

49. about 20 years **50.**

1000 = 500(1.04)^t t ≈ 18 yr for r = 0.08 1000 = 500(1.08)^t t ≈ 9 yr 51. A = P(0.5)^t

 $y = a(1 + r)^{t}$

$$10 = 80(0.5)^{t}$$

$$t = 3$$

So, half-life = $\frac{300}{t}$ = 100 min or 1 h 40 min

52.
$$A = P(0.5)^t$$

 $15 = P(0.5)^{\frac{6}{2}}$

$$P = 120 \text{ g}$$

53.
$$A = P(1 + \frac{r}{n})^{m}$$

250,000 = $P(1 + 0.013)^{(4 \cdot 8)}$
 $P = $225,344$

54.	Month	Balance (\$)	Monthly Payment (\$)	Remaining Balance (\$)	1.5% Finance Charge (\$)	New Balance (\$)
	1	200	30	170	2.55	172.55
	2	172.55	30	142.55	2.14	144.69
	3	144.69	30	114.69	1.72	116.41
	4	116.41	30	86.41	1.30	87.71
	5	87.71	30	57.71	0.87	58.58
	6	58.58	30	28.58	0.43	29.01
	7	29.01	29.01	0	0	0

b. Table shows balance is paid off in 7 months.

c. (6(30) + 29.01) - 200 = 9.01

9-4 LINEAR, QUADRATIC AND EXPONENTIAL MODELS

CHECK IT OUT!

1a. exponential

- **2.** Quadratic; for every constant change in the *x*-values of +1, there is a constant second difference of -6 in the *y*-values.
- **3.** The oven temperature decreases by 50°F every 10 minutes; y = -5x + 375; 75°F

THINK AND DISCUSS

- **1.** No; most real-world data probably will not fit exactly into one of these patterns.
- 2. No; this is just a prediction based on the assumption that the observed trends will continue, which they may or may not do.

3. linear

	<u> </u>	X
-6-	0	6
	-6 -	
	• + '	
	- T +	
	-12 🛔	

 Quadratic; for every constant change of +1 in the *x*-values, there is a constant second difference of -1 in the *y*-values.

- **5.** Exponential; for every constant change of +1 in the *x*-values, there is a constant ratio of 2.
- **6.** Linear; for every constant change of +1 in the *x*-values, there is a constant change of +2 in the *y*-values.
- **7.** Grapes cost \$1.79/lb; *y* = 1.79*x*; \$10.74

Holt McDougal Algebra 1