44. Possible answer: The following table shows how much money you could earn with each plan.

Year	Salary Plan A	Salary Plan B
0	$\$ 0$	$\$ 10,000$
1	$\$ 20,000$	$\$ 20,000$
2	$\$ 40,000$	$\$ 40,000$
3	$\$ 60,000$	$\$ 80,000$

Choose plan B because plan A doesn't pay anything for the first year and because after 3 years, plan B pays more money.
45. C; the other graphs do not increase exponentially.
46. $\mathrm{G} ; f(4)=15(1.4)^{2}=29.4$
47. D; $a_{1}=5, r=5$, hence $a_{n}=5(5)^{n-1}=5^{n}$

CHALLENGE AND EXTEND

48. $4^{x}=64$
$4^{x}=4^{3}$
49. $\left(\frac{1}{3}\right)^{x}=\frac{1}{27}$
$x=3$
$3^{-x}=3^{-3}$

$$
-x=-3
$$

$$
x=3
$$

50. $2^{x}=\frac{1}{16}$
$2^{x}=\frac{1}{24}$
$2^{x}=2^{-4}$
$x=-4$
51. The value of a is the y-intercept.

READY TO GO ON? Section A Quiz

1. $\frac{6}{3}=2 ; \frac{12}{6}=2 ; \frac{24}{12}=2$; the common ratio is 2 next 3 terms: $24(2)=48,48(2)=96$, and $96(2)=192$
2. $\frac{2}{-1}=-2 ; \frac{-4}{2}=-2 ; \frac{8}{-4}=-2$;
the common ratio is -2
next 3 terms: $8(-2)=-16,(-16)(-2)=32$, and $32(-2)=-64$
3. $\frac{-1200}{-2400}=\frac{1}{2} ; \frac{-600}{-1200}=\frac{1}{2} ; \frac{-300}{-600}=\frac{1}{2}$
next 3 terms: $-300\left(\frac{1}{2}\right)=-150,-150\left(\frac{1}{2}\right)=-75$, and $-75\left(\frac{1}{2}\right)=-37.5$
4. $a_{n}=a_{1} r^{n-1}$
$a_{8}=(2)(3)^{8-1}$
$a_{8}=4374$

$$
\text { 5. } \begin{aligned}
a_{1} & =1000, r=\frac{4}{5} \\
a_{n} & =a_{1} r^{n-1} \\
a_{7} & =1000\left(\frac{4}{5}\right)^{7-1} \\
a_{7} & =262.144 \mathrm{~cm}
\end{aligned}
$$

6. $f(x)=3(1.1)^{x}$
$f(4)=3(1.1)^{4}$
$f(4)=4.39$ in
7. $y=3^{x}$

8. $y=2(2)^{x}$

9. $y=-(0.5)^{x}$

10. $y=-2(4)^{x}$

11. $f(x)=40(0.8)^{x}$

$$
2=40(0.8)^{x}
$$

$$
x \approx 14
$$

after about 14 h

9-3 EXPONENTIAL GROWTH AND DECAY

CHECK IT OUT!

1. $y=a(1+r)^{t}$
$=1200(1.08)^{t}$;
In 2006, $y=1200(1.08)^{6}=\$ 1904.25$
2a. $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& =1200\left(1+\frac{0.035}{4}\right)^{4 t} \\
& =1200(1.00875)^{4 t,}
\end{aligned}
$$

After 4 years, $A=1200(1.00875)^{16}=\$ 1379.49$
b. $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& =4000\left(1+\frac{0.03}{12}\right)^{12 t} \\
& =4000(1.0025)^{12 t}
\end{aligned}
$$

After 8 years, $A=4000(1.0025)^{96}=\$ 5083.47$
3. $y=a(1-r)^{t}$

$$
\begin{aligned}
& =48,000(1-0.03)^{t} \\
& =48,000(0.97)^{t}
\end{aligned}
$$

After 7 years, $y=48,000(0.97)^{7}=38,783$
4a. $t=\frac{180 \text { years }}{30 \text { years }}$

$$
=6
$$

$A=P(0.5)^{\mathrm{t}}$

$$
=100(0.5)^{6}
$$

$$
=1.5625 \mathrm{mg}
$$

$$
\text { b. } \begin{aligned}
t & =\frac{5 \text { weeks }}{5 \text { days }} \\
& =7 \\
A & =P(0.5)^{t} \\
& =100(0.5)^{7} \\
& =0.78125 \mathrm{~g}
\end{aligned}
$$

THINK AND DISCUSS

1. Possible answers: interest earned on an investment, population growth or decline, radioactive decay
2. increasing; by 2% per year
3. An exponential growth function has the form $y=a(1+r)^{t}$. The base $(1+r)$ corresponds to the base b. The exponent t corresponds to the exponent x. An exponential decay function has the form
$y=a(1-r)^{t}$. The base $(1-r)$ corresponds to the base b. The exponent t corresponds to the exponent x.
4.

How are they alike? Both are exponential functions, have a domain of all real numbers, have a range of all real numbers greater than 0 , and represent a change in quantity by the same rate over time.

How are they different? One increases over time and the other decreases over time, in one you add the rate to 1 and in the other you subtract the rate from 1 .

EXERCISES

GUIDED PRACTICE

1. exponential growth, since $2>1$.
2. $y=a(1+r)^{t}$

$$
\begin{aligned}
& =12,000(1+0.06)^{t} \\
& =12,000(1.06)^{t}
\end{aligned}
$$

After 4 years, $y=12,000(1.06)^{4}=\$ 15,149.72$
3. $y=a(1+r)^{t}$

$$
\begin{aligned}
& =300(1+0.08)^{t} \\
& =300(1.08)^{t}
\end{aligned}
$$

After 5 years, $y=300(1.08)^{5}=441$
4. $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& =1500\left(1+\frac{0.035}{1}\right)^{t} \\
& =1500(1.035)^{t}
\end{aligned}
$$

After 4 years, $A=1500(1.035)^{4}=\$ 1721.28$
5. $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& =4200\left(1+\frac{0.028}{4}\right)^{4 t} \\
& =4200(1.007)^{4 t}
\end{aligned}
$$

Ater 6 years, $A=4200(1.007)^{24}=\$ 4965.43$
6. $y=a(1-r)^{t}$

$$
\begin{aligned}
& =18,000(1-0.12)^{t} \\
& =18,000(0.88)^{t}
\end{aligned}
$$

After 10 years, $y=18,000(0.88)^{10}=\$ 5013.02$
7. $y=a(1-r)^{t}$
$=a(1-r)^{t}$
$=10(1-0.16)^{t}$
$=10(0.84)^{t}$
$=10(0.84)^{t}$
After 4 hours, $y=10(0.84)^{4}=4.98 \mathrm{mg}$
8. $t=\frac{1 \mathrm{hr}}{20 \mathrm{~min}}$
9. $t=\frac{156 \text { days }}{52 \text { days }}$
$=3$
$=3$
$A=P(0.5)^{t}$
$A=P(0.5)^{t}$
$=30(0.5)^{3}$
$=44(0.5)^{3}$
$=3.75 \mathrm{~g}$
$=5.5 \mathrm{~g}$

PRACTICE AND PROBLEM SOLVING

10. $y=a(1+r)^{t}$

$$
=149,000(1.06)^{t}
$$

After 7 years, $y=149,000(1.06)^{7}=\$ 224,040.91$
11. $y=a(1+r)^{t}$

$$
\begin{aligned}
& =1600(1+0.03)^{t} \\
& =1600(1.03)^{t}
\end{aligned}
$$

After 10 years, $y=1600(1.03)^{10}=2150$
12. $A=P(1+r)^{t}$

$$
\begin{aligned}
& =700(1+0.012)^{t} \\
& =700(1.012)^{t}
\end{aligned}
$$

After 8 years, $A=700(1.012)^{8}=\$ 770.09$
13. $y=P(1+r)^{t}$

$$
\begin{aligned}
& =30(1+0.078)^{t} \\
& =30(1.079)^{t}
\end{aligned}
$$

After 6 years, $y=30(1.078)^{6}=47$ members
14. $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& =28,000(1+0.04)^{t} \\
& =28,000(1.04)^{t}
\end{aligned}
$$

After 5 years, $A=28,000(1.04)^{5}=\$ 34,066.28$
15. $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& =7000\left(1+\frac{0.03}{4}\right)^{4 t} \\
& =7000(1.0075)^{4 t}
\end{aligned}
$$

After 10 years, $A=7000(1.0075)^{40}=\$ 9438.44$
16. $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& =3500\left(1+\frac{0.018}{12}\right)^{12 t} \\
& =3500(1.0015)^{12 t}
\end{aligned}
$$

After 4 years, $A=3500(1.0015)^{48}=\$ 3761.09$
17. $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& =12,000(1+0.026)^{t} \\
& =12,000(1.026)^{t}
\end{aligned}
$$

After 15 years, $A=12,000(1.026)^{15}=\$ 17,635.66$
18. $y=a(1-r)^{t}$

$$
\begin{aligned}
& =18,000(1-0.02)^{t} \\
& =18,000(0.98)^{t} \\
& \text { After } 6 \text { years, } y=18,000(0.98)^{6}=15,945
\end{aligned}
$$

19. $y=a(1-r)^{t}$

$$
\begin{aligned}
& =58(1-0.1)^{t} \\
& =58(0.9)^{t}
\end{aligned}
$$

After 8 years, $y=58(0.9)^{8}=\$ 24.97$
20. $t=\frac{6 \text { days }}{36 \text { hours }}$

$$
\begin{aligned}
& =\frac{144 \text { hours }}{36 \text { hours }} \\
& =4
\end{aligned}
$$

$$
\begin{aligned}
A & =P(0.5)^{t} \\
& =80(0.5)^{4} \\
& =5 \mathrm{~g}
\end{aligned}
$$

21. growth; 61%, since $1+r=1.61$
22. decay; 90.2%, since $1-r=0.098$
23. decay; $33 \frac{1}{3} \%$, since $1-r=\frac{2}{3}$
24. growth; 50%, since $1+r=\frac{3}{2}$
25. growth; 10%, since $1+r=1.1$
26. decay; 20%, since $1-r=0.8$
27. growth; 25%, since $1+r=\frac{5}{4}$
28. decay; 50%, since $1-r=\frac{1}{2}$
29. $y=a(1+r)^{t}$

$$
=58,000,000(1.001)^{t}
$$

After 3 years, $y=58,000,000(1.001)^{3}$

$$
=58,174,174
$$

30. $y=a(1+r)^{t}$

$$
=32,000(1.07)^{t}
$$

After 5 years, $y=32,000(1.07)^{5}=\$ 44,881.66$
31. $y=a(1-r)^{t}$

$$
\begin{aligned}
& =8200(1-0.02)^{t} \\
& =8200(0.98)^{t}
\end{aligned}
$$

After 7 years, $y=8200(0.98)^{7}=\$ 7118.63$
32. $y=a(1-r)^{t}$

$$
\begin{aligned}
& =25,000(1-0.15)^{t} \\
& =25,000(0.85)^{t}
\end{aligned}
$$

After 6 years, $y=25,000(0.85)^{6}=\$ 9428.74$
33. $y=a(1+r)^{t}$

$$
\begin{aligned}
& =970(1+0.012)^{t} \\
& =970(1.012)^{t}
\end{aligned}
$$

After 5 years, $y=970(1.012)^{5}=1030$
34. $t=\frac{3500 \text { years }}{5700 \text { years }}$

$$
\begin{aligned}
& =\frac{35}{57} \\
A & =P(0.5)^{t} \\
& =15(0.5)^{\frac{35}{57}} \\
& \approx 9.80 \mathrm{~g}
\end{aligned}
$$

35. B; possible answer: student B did not subtract the rate from 1.
36. No; possible answer; there is no value for t that would make (0.84) ${ }^{t}$ equal 0 .
37. $y=a(1+r)^{t}$

$$
\begin{aligned}
600 & =300(1+0.04)^{t} \\
2 & =1.04^{t} \\
t & \approx 18 \text { years }
\end{aligned}
$$

38a. $y=a(1+r)^{r}$

$$
=20,000(1.09)^{t}
$$

b. In 2008, $t=6$, hence

$$
y=20,000(1.09)^{6}=\$ 33,542
$$

c. 2011

Year	Tuition (\$)
2002	20,000
2003	21,800
2004	23,762
2005	$25,900.58$
2006	$28,231.63$
2007	$30,772.48$
2008	$33,542.00$
2009	$36,560.78$
2010	$39,851.25$
2011	$43,437.87$

39. In 10 years:

A: $600(1.05)^{10}=\$ 977.34$
B: $500\left(1+\frac{0.06}{4}\right)^{40}=500(1.015)^{40}$

$$
=\$ 907.01
$$

A will have a larger balance.
In 20 years:
A: $600(1.05)^{20}=\$ 1591.98$
B: $500(1.015)^{80}=\$ 1645.33$
B will have a larger balance.
40. $50 \mathrm{~h} ; 15 \mathrm{~h}$
41. The graph when r is 20% rises faster than when r is 10%. The greater the value of r, the faster the graph will rise.

42. Possible answer: $\$ 400$ is invested at a rate of 8% compounded annually.
43. Possible answer: The population is 800 and decreasing at a rate of 4% per year.
44. No; possible answer: the sample doubles every minute, so the container is half full 1 minute before it is full. This would be after 5 min .
45. $\mathrm{D} ; \quad y=a(1-r)^{t}$
$a=500,1-r=1-0.01=0.99$
46. G ; $a=-5$, so as the absolute value of y decreases, y is actually increasing.
47. $\mathrm{D} ; 865(1.05)^{3}=\$ 1001.35$

48a. $y=a(1+r)^{t}$

$$
\begin{aligned}
& =1000(1+0.05)^{t} \\
& =1000(1.05)^{t}
\end{aligned}
$$

b. $1300=1000(1.05)^{t}$
$t \approx 5$; about 2005

CHALLENGE AND EXTEND

49. about 20 years

$$
\text { 50. } \begin{aligned}
y & =a(1+r)^{t} \\
1000 & =500(1.04)^{t} \\
t & \approx 18 \mathrm{yr} \\
\text { for } r & =0.08 \\
1000 & =500(1.08)^{t} \\
t & \approx 9 \mathrm{yr}
\end{aligned}
$$

51. $A=P(0.5)^{t}$
$10=80(0.5)^{t}$
$\quad t=3$
So, half-life $=\frac{300}{t}=100 \mathrm{~min}$ or 1 h 40 min
52. $A=P(0.5)^{t}$
$15=P(0.5)^{\frac{6}{2}}$
$P=120 \mathrm{~g}$
53. $A=P\left(1+\frac{r}{n}\right)^{n t}$
$250,000=P(1+0.013)^{(4 \cdot 8)}$
$P=\$ 225,344$
54.

Month	Balance (\$)	Monthly Payment (\$)	Remaining Balance (\$)	1.5\% Finargee (\$) Charge	New Balance (\$)
1	200	30	170	2.55	172.55
2	172.55	30	142.55	2.14	144.69
3	144.69	30	114.69	1.72	116.41
4	116.41	30	86.41	1.30	87.71
5	87.71	30	57.71	0.87	58.58
6	58.58	30	28.58	0.43	29.01
7	29.01	29.01	0	0	0

b. Table shows balance is paid off in 7 months.
c. $(6(30)+29.01)-200=9.01$

9-4 LINEAR, QUADRATIC AND EXPONENTIAL MODELS

CHECK IT OUT!

1a. exponential

b. quadratic

2. Quadratic; for every constant change in the x-values of +1 , there is a constant second difference of -6 in the y-values.
3. The oven temperature decreases by $50^{\circ} \mathrm{F}$ every 10 minutes; $y=-5 x+375 ; 75^{\circ} \mathrm{F}$

THINK AND DISCUSS

1. No; most real-world data probably will not fit exactly into one of these patterns.
2. No; this is just a prediction based on the assumption that the observed trends will continue, which they may or may not do.
3.

EXERCISES

GUIDED PRACTICE

1. exponential

2. linear

3. quadratic

4. Quadratic; for every constant change of +1 in the x-values, there is a constant second difference of -1 in the y-values.
5. Exponential; for every constant change of +1 in the x-values, there is a constant ratio of 2 .
6. Linear; for every constant change of +1 in the x-values, there is a constant change of +2 in the y-values.
7. Grapes cost $\$ 1.79 / \mathrm{lb} ; y=1.79 x ; \$ 10.74$
