Solutions Key

ARE YOU READY

1. B; like terms: terms that contain the same variable raised to the same power
2. F; square root: one of two equal factors of a number
3. C; domain: the set of first elemtns of a relation
4. E; perfect square: a number whose positive square root is a whole number
5. D; exponent: a number that tells how many times a base is used as a factor
6. 16
7. 1
8. 63
9. 375
10. 243
11. -28
12. 320
13. 147
14. $y=8$

15. $y=x+3$

16. $y=x^{2}-4$

17. 0.5
18. 0.25
19. 0.152
20. 2.0
21. 0.019
22. 0.003
23. 0.001
24. 0.0104
25. $6 ; 6 \cdot 6=36$
26. $9 ; 9 \cdot 9=81$
27. $5 ; 5 \cdot 5=25$
28. $8 ; 8 \cdot 8=64$
29. $h^{2}=3^{2}+4^{2}$
$h^{2}=25$
$h=5 \mathrm{~cm}$
30. $h^{2}=12^{2}+5^{2}$
$h^{2}=169$
$h=13 \mathrm{in}$.
31. $h^{2}=6^{2}+8^{2}$
$h^{2}=100$
$h=10 \mathrm{ft}$
32. $5(2 m-3)=5 \cdot 2 m-5 \cdot 3$

$$
=10 m-15
$$

34. $3 x(8 x+9)=3 x \cdot 8 x+3 x \cdot 9$

$$
=24 x^{2}+27 x
$$

35. $2 t(3 t-1)=2 t \cdot 3 t-2 t \cdot 1$

$$
=6 t^{2}-2 t
$$

36. $4 r(4 r-5)=4 r \cdot 4 r-4 r \cdot 5$

$$
=16 r^{2}-20 r
$$

9-1 GEOMETRIC SEQUENCES

CHECK IT OUT!

1a. $80,-160,320 ;(-10) \div 5=-2$,
$20 \div(-10)=-2,(-40) \div 20=-2$
So, the common ratio is -2 .
$(-40) \cdot(-2)=80,80 \cdot(-2)=-160$, and $(-160) \cdot(-2)=320$
b. $216,162,121.5 ; 384 \div 512=\frac{3}{4}, 288 \div 384=\frac{3}{4}$, So, the common ratio is $\frac{3}{4}$.
$288 \cdot \frac{3}{4}=216,216 \cdot \frac{3}{4}=162$, and $162 \cdot \frac{3}{4}=121.5$
2. $a_{n}=a_{1} r^{n-1}$
$a_{8}=1000\left(\frac{1}{2}\right)^{7}$
$a_{8}=7.8125$
3. $a_{n}=a_{1} r^{n-1}$
$a_{10}=10,000\left(\frac{4}{5}\right)^{9}$
$a_{10}=1342.18 ;$
\$1342.18

THINK AND DISCUSS

1. Possible answer: Divide each term after the first by the preceding term. If the quotients are all the same, the sequence is geometric.
2. Possible answer:

EXERCISES

GUIDED PRACTICE

1. common ratio: the value that each term is multiplied by to get the next term.
2. $32,64,128 ; 4 \div 2=2,8 \div 4=2,16 \div 8=2$ So, the common ratio is 2 .
Then, $16 \cdot 2=32,32 \cdot 2=64$, and $64 \cdot 2=128$
3. $25,12.5,6.25 ; 200 \div 400=\frac{1}{2}$,
$100 \div 200=\frac{1}{2}, 50 \div 100=\frac{1}{2}$
So, the common ratio is $\frac{1}{2}$.
Then, $50 \cdot \frac{1}{2}=25,25 \cdot \frac{1}{2}=12.5$,
and $12,5 \cdot \frac{1}{2}=6.25$
4. $324,-972,2916 ;(-12) \div 4=-3$,
$36 \div(-12)=-3,(-108) \div 36=-3$
So, the common ratio is -3 .
Then, $(-108) \cdot(-3)=324,324 \cdot(-3)=-972$, and $(-972) \cdot(-3)=2916$
5. $a_{n}=a_{1} r^{n-1}$
$a_{10}=1 \cdot 10^{10-1}$
6. $a_{n}=a_{1} r^{n-1}$
$a_{10}=1,000,000,000$

$$
a_{11}=3 \cdot 2^{11-1}
$$

$a_{11}=3072$
7. $\frac{32}{64}=\frac{1}{2} ; \frac{16}{32}=\frac{1}{2}$
$a_{n}=a_{1} r^{n-1}$
$a_{5}=64 \cdot\left(\frac{1}{2}\right)^{4}$
$a_{5}=4$

PRACTICE AND PROBLEM SOLVING

8. $-1250,6250,-31,250 ; \frac{10}{-2}=-5$; $\frac{-50}{10}=-5 ; \frac{250}{-50}=-5$
So, the common ratio is -5 .
Then, $250 \cdot(-5)=-1250,-1250 \cdot(-5)=6250$,
and $6250, \cdot(-5)=-31250$
9. $162,243,364.5 ; \frac{48}{32}=\frac{3}{2} ; \frac{72}{48}=\frac{3}{2} ; \frac{108}{72}=\frac{3}{2}$

So, the common ratio is $\frac{3}{2}$.
Then, $108\left(\frac{3}{2}\right)=162,162\left(\frac{3}{2}\right)=243$,
and $243\left(\frac{3}{2}\right)=364.5$
10. $256,204.8,163.84 ; \frac{500}{625}=\frac{4}{5} ; \frac{400}{500}=\frac{4}{5} ; \frac{320}{400}=\frac{4}{5}$

So, the common ratio is $\frac{4}{5}$.
Then, $320\left(\frac{4}{5}\right)=256,256\left(\frac{4}{5}\right)=204.8$,
and $204.8\left(\frac{4}{5}\right)=163.84$
11. 2058, 14406,$100842 ; \frac{42}{6}=7 ; \frac{294}{42}=7$

So, the common ratio is 7 .
Then, $294 \cdot 7=2058,2058 \cdot 7=14,406$
and $14,406 \cdot 7=100,842$
12. $96,-192,384 ;-\frac{12}{6}=-2 ; \frac{24}{-12}=-2 ; \frac{-48}{24}=-2$

So, the common ratio is -2 .
Then, $-48(-2)=96,96(-2)=-192$, and $-192(-2)=384$
13. $\frac{5}{32}, \frac{5}{128}, \frac{5}{512} ; \frac{10}{40}=\frac{1}{4} ; \frac{5}{2} \div 10=\frac{1}{4} ; \frac{5}{8} \div \frac{5}{2}=\frac{1}{4}$

So, the common ratio is $\frac{1}{4}$.
Then, $\left(\frac{5}{8}\right)\left(\frac{1}{4}\right)=\frac{5}{32},\left(\frac{5}{32}\right)\left(\frac{1}{4}\right)=\frac{5}{128}$, and
$\left(\frac{5}{128}\right)\left(\frac{1}{4}\right)=\frac{5}{512}$
14. $a_{n}=a_{1} r^{n-1}$
$a_{5}=18 \cdot(3.5)^{5-1}$
$a_{5}=2701.125$
15. $\frac{100}{1000}=\frac{1}{10} ; \frac{10}{100}=\frac{1}{10} ; \frac{1}{10}=\frac{1}{10}$
$a_{n}=a_{1} r^{n-1}$
$a_{14}^{n}=1000 \cdot 0.1^{14-1}$
$a_{14}=0.0000000001$ or $a_{14}=1 \times 10^{-10}$
16. $83.9 \mathrm{~m} ; \frac{320}{400}=\frac{4}{5} ; \frac{256}{320}=\frac{4}{5}$
$a_{n}=a_{1} r^{n-1}$
$a_{8}=400\left(\frac{4}{5}\right)^{8-1}$
$a_{8}=83.9$
17. $20,40,80,160 ; \frac{40}{20}=2$, so the common ratio is 2 ; $40 \cdot 2=80$ and $80 \cdot 2=160$
18. $2,6,18,54 ; \frac{18}{6}=3$, so the common ratio is 3 ;
$\frac{6}{3}=2$ and $18 \cdot 3=54$
19. $9,3,1, \frac{1}{3} ; \frac{3}{9}=\frac{1}{3} ; \frac{1}{3}=\frac{1}{3}$

So the common ratio is $\frac{1}{3} ; 1 \cdot \frac{1}{3}=\frac{1}{3}$
20. $3,12,48,192,768 ; \frac{12}{3}=4$, so the common ratio is $4 ; 12 \cdot 4=48$ and $192 \cdot 4=768$
21. $7,1, \frac{1}{7}, \frac{1}{49}, \frac{1}{343}$; The common ratio is $\frac{1}{7}$;
$1 \cdot \frac{1}{7}=\frac{1}{7}$ and $\frac{1}{7} \cdot \frac{1}{7}=\frac{1}{49}$
22. $400,100,25, \frac{25}{4} ; \frac{25}{100}=\frac{1}{4}$, so the common ratio is $\frac{1}{4}$.
Then, $100 \div \frac{1}{4}=25$ and $25 \cdot \frac{1}{4}=\frac{25}{4}$
23. $-3,6,-12,24,-48 ; \frac{24}{-12}=-2$, so the common ratio is -2 .
Then, $-3 \cdot(-2)=6$ and $24 \cdot(-2)=-48$
24. $\frac{1}{9},-\frac{1}{3}, 1,-3,9 ;-\frac{3}{1}=-3 ; \frac{9}{-3}=-3$

So the common ratio is -3 .
Then, $1 \div-3=-\frac{1}{3}$ and $-\frac{1}{3} \div-3=\frac{1}{9}$
25. $1,17,289,4913 ; \frac{17}{1}=17 ; \frac{289}{17}=17$

So the common ratio is 17 .
Then, $289 \cdot 17=4913$
26. $\frac{10}{2}=5 ; \frac{50}{10}=5 ; \frac{250}{50}=5$

The common ratio is 5 ; yes.
27. $\frac{15}{5}=\frac{1}{3} ; \frac{5}{3} \div 5=\frac{1}{3} ; \frac{5}{9} \div \frac{5}{3}=\frac{1}{3}$

The common ratio is $\frac{1}{3}$; yes.
28. $\frac{18}{6}=3 ; \frac{24}{18}=\frac{4}{3} ; \frac{38}{24}=\frac{19}{12}$

There is no common ratio; no.
29. $\frac{3}{9}=\frac{1}{3} ; \frac{-1}{3}=-\frac{1}{3} ; \frac{-5}{-1}=5$

There is no common ratio; no.
30. $\frac{21}{7}=3 ; \frac{63}{21}=3 ; \frac{189}{63}=3$

The common ratio is 3 ; yes.
31. $\frac{1}{4}=\frac{1}{4} ; \frac{-2}{1}=-2 ; \frac{-4}{-2}=2$ There is no common ratio; no.
32a. $\frac{2}{1}=2 ; \frac{4}{2}=2 ; \frac{8}{4}=2$
Plan 2 is a geometric sequence with common ratio 2.
b. Possible answer: Plan 1; Under Plan 2, the cost for the 10th week alone is $\$ 512$, which is more than the cost for the entire summer under Plan 1.
33a. $a_{n}=a_{1} r^{n-1}$
$a_{7}=0.02 \cdot 2^{6}$
$a_{7}=1.28 \mathrm{~cm}$
b. $a_{n}=a_{1} r^{n-1}$
$a_{12}=0.02 \cdot 2^{11}$
$a_{12}=40.96 \mathrm{~cm}$
34. $a_{1}=3$
$a_{2}=3(2)^{1}=6$
$a_{3}=3(2)^{2}=12$
$a_{4}=3(2)^{3}=24$
35. $a_{1}=-2$
$a_{2}=-2(4)^{1}=-8$
$a_{3}=-2(4)^{2}=-32$
$a_{4}=-2(4)^{3}=-128$
36. $a_{1}=5$
$a_{2}=5(-2)^{1}=-10$
$a_{3}=5(-2)^{2}=20$
$a_{4}=5(-2)^{3}=-40$
37. $a_{1}=2$
$a_{2}=2(2)^{1}=4$
$a_{3}=2(2)^{2}=8$
$a_{4}=2(2)^{3}=16$
38. $a_{1}=2$
$a_{2}=2(5)^{1}=10$
$a_{3}=2(5)^{2}=50$
$a_{4}=2(5)^{3}=250$
39. $a_{1}=12$
$a_{2}=12\left(\frac{1}{4}\right)^{1}=3$
$a_{3}=12\left(\frac{1}{4}\right)^{2}=\frac{3}{4}$
$a_{4}=12\left(\frac{1}{4}\right)^{3}=\frac{3}{16}$
40. Each term is multiplied by 2^{n-1}, where n is the term number. For example, begin with the geometric sequence $4,12,36,108$. ..., where $r=3$. If r is doubled to 6 , the sequence becomes $4,24,144$, 864,

41a. Stage 0

Stage 2:

Stage 1:

Stage 3:

b.

Stage	Squares
0	1
1	4
2	16
3	64

c. $\frac{4}{1}=4 ; \frac{16}{4}=4 ; \frac{64}{16}=4$
yes; $r=4$
d. $r=4$ and $a_{1}=4$
$a_{n}=a_{1} r^{n-1}$
$a_{n}=4(4)^{n-1}$
$a_{n}=4^{n}$
42. Divide each term by the preceeding term to find the value of r. Then use the formula $a_{n}=a_{1} r^{n-1}$, where a_{1} is the first term of the sequence.
43a. $\frac{3300}{3000}=1.1 ; \frac{3630}{3300}=1.1$
$a_{4}=3630 \cdot 1.1=\$ 3993$
$a_{5}=3993 \cdot 1.1=\$ 4392.30$
b. $\frac{3300}{3000}=1.1 ; \frac{3630}{3300}=1.1$

The common ratio is 1.1 .
c. $\$ 2727.27$; divide tuition 3 years ago (\$3000) by 1.1, the common ratio.

TEST PREP

44. $\mathrm{D}: \frac{10}{5}=2 ; \frac{20}{10}=2 ; \frac{40}{20}=2$; there is a common ratio.
45. J; since $r=-4$ and $a_{1}=2$,
$\left(\frac{-8}{2}=-4 ; \frac{32}{-8}=-4 ; \frac{-128}{32}=-4\right)$
$a_{n}=2(-4)^{n-1}$
46. C; $r=2$ and $A_{1}=55$
$A_{n}=A_{a} r^{n-1}$
$A_{7}=A_{1} r^{6}$
$A_{7}=3520 \mathrm{~Hz}$

CHALLENGE AND EXTEND

47. $\frac{x^{2}}{x}=x ; \frac{x^{3}}{x^{2}}=x$
$r=x$ and $a_{1}=x ;$
$a_{4}=x(x)^{3}=x^{4}$
$a_{5}=x(x)^{4}=x^{5}$
$a_{6}=x(x)^{5}=x^{6}$
48. $\frac{6 x^{3}}{2 x^{2}}=3 x ; \frac{18 x^{4}}{6 x^{3}}=3 x$
$r=3 x$ and $a_{1}=2 x^{2}$;
$a_{4}=2 x^{2}(3 x)^{3}=54 x^{5}$
$a_{5}=2 x^{2}(3 x)^{4}=162 x^{6}$
$a_{6}=2 x^{2}(3 x)^{5}=486 x^{7}$
49. $\frac{1}{y^{2}} \div \frac{1}{y^{3}}=y ; \frac{1}{y} \div \frac{1}{y^{2}}=y$
$r=y$ and $a_{1}=\frac{1}{y^{3}}$
$a_{4}=\frac{1}{y^{3}}(y)^{3}=1$
$a_{5}=\frac{1}{y^{3}}(y)^{4}=y$
$a_{6}=\frac{1}{y^{3}}(y)^{5}=y^{2}$
50. $\frac{1}{x+1} \div \frac{1}{(x+1)^{2}}=x+1 ; 1 \div \frac{1}{x+1}=x+1$
$r=x+1$ and $a_{1}=\frac{1}{(x+1)^{2}}$
$a_{4}=\frac{1}{(x+1)^{2}}(x+1)^{3}=x+1$
$a_{5}=\frac{1}{(x+1)^{2}}(x+1)^{4}=(x+1)^{2}$
$a_{6}=\frac{1}{(x+1)^{2}}(x+1)^{5}=(x+1)^{3}$
51. $a_{10}=a_{1} r^{9}$
$a_{1}=\frac{a_{10}}{r^{9}}$
$a_{1}=\frac{0.78125}{(-0.5)^{9}}$
$a_{1}=-400$
52. No; each term of the sequence is found by multiplying the previous term by the common ratio $\frac{1}{2} \cdot \frac{1}{2}$ of any positive number is always another positive (nonzero) number.
53. $a_{n}=a_{1} r^{n-1}$
$r^{n-1}=\frac{a_{n}}{a_{1}}$
$(0.4)^{n-1}=\frac{0.057344}{14}$
$(0.4)^{n-1}=(0.4)^{6}$
Then, $n-1=6$

$$
n=7
$$

54. Susanna assumed the sequence was geometric with $r=2$. She used the formula to find $a_{8}=128$. Paul did not assume the sequence was geometric. Instead, he noticed a pattern of "add 1, add 2, and so on." He continued this pattern by adding 3, adding 4 , etc., until he got the 8th term of 29 . Both could be considered correct because it was not specified what type of sequence was given.

9-2 EXPONENTIAL FUNCTIONS

CHECK IT OUT!

1. $f(x)=8(0.75)^{x}$
$f(3)=8(0.75)^{3}$
$f(3)=8(0.421875)$
$f(3)=3.375 \mathrm{in}$.
2a. No; as the x-values change by a constant amount, the y-values are not multiplied by a constant amount.
b. Yes; as the x-values change by a constant amount, the y-values are multiplied by a constant amount.

3a. $y=2^{x}$

4a. $y=-6^{x}$

5a. $y=4\left(\frac{1}{4}\right)^{x}$

b. $y=0.2(5)^{x}$

b. $y=-3(3)^{x}$

b. $y=-2(0.1)^{x}$

