Hydraulics A

1. If the hydraulic system at my mechanic shop has a large piston below the cars with an area of $100 \mathrm{~cm}^{2}$, and the pump piston supplying the pressure to the line has an area of $2 \mathrm{~cm}^{2}$, how much force would I have to apply to the pump piston to lift a 1000 kg car?
2. If the hydraulic system at my mechanic shop has a large piston below the cars with an area of $120 \mathrm{~cm}^{2}$, and the pump piston supplying the pressure to the line has an area of $3 \mathrm{~cm}^{2}$, how much force would I have to apply to the pump piston to lift a 1200 kg car?
3. If you weigh 120 pounds and push down on a pump with a 2 square inch cylinder, what is the maximum pressure you can create?

Answers to part B

1. 250 N
2. 400 N
3. 60 PSI (pounds per square inch)
4. If the hydraulic system at my mechanic shop has a large piston below the cars with an area of $80 \mathrm{~cm}^{2}$, and the pump piston supplying the pressure to the line has an area of $2 \mathrm{~cm}^{2}$, how much force would I have to apply to the pump piston to lift a 1000 kg car?
5. If the hydraulic system at my mechanic shop has a large piston below the cars with an area of $90 \mathrm{~cm}^{2}$, and the pump piston supplying the pressure to the line has an area of $3 \mathrm{~cm}^{2}$, how much force would I have to apply to the pump piston to lift a 1200 kg car?
6. If you weigh 150 pounds and push down on a pump with a 2.5 square inch cylinder, what is the maximum pressure you can create?

Answers to part A

1. 200 N
2. 300 N
3. 60 PSI (pounds per square inch)
