Gravitational Force Calculations (Teamwork) A Name ___

$$
F=G \frac{m_{1} m_{2}}{d^{2}}
$$

1. Calculate the gravitational force between the Earth and the Sun The mass of the earth is $5.97 \times 10^{24} \mathrm{~kg}$ The mass of the Sun is $1.99 \times 10^{30} \mathrm{~kg}$ The distance between the two is $1.50 \times 10^{11} \mathrm{~m}$

$$
\mathrm{G}=6.67 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}
$$

Answer to Part B

1. 1.98 E 20 N (for 5 extra credit points, show that this matches the centripetal force)

Gravitational Force Calculations (Teamwork) B Name

$$
F=G \frac{m_{1} m_{2}}{d^{2}}
$$

1. Calculate the gravitational force between the Earth and the moon The mass of the earth is $5.97 \times 10^{24} \mathrm{~kg}$ The mass of the Moon is $7.35 \times 10^{22} \mathrm{~kg}$ The distance between the two is $3.84 \times 10^{8} \mathrm{~m}$

$$
\mathrm{G}=6.67 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}
$$

Answer to Part A

1. 3.52 E 22 N (I verified this with the centripetal force. For 5 extra credit points, and a nomination for the student of the quarter, show that the centripetal force is the same)
