Centripetal Acceleration Lab

Centripetal acceleration force is a large force $a=r \omega^{2} . \omega$ is the angular speed, in radians per second, and r is the radius. There are 2π radians per rotation.
Compare it to the gravitational force. How fast would I have to be turning a 25 g mass on a 0.3 m string to create as much force as the force of gravity on 100 g of washers? How fast would I have to be turning a 50 g mass if the radius is only 0.2 m to lift the washers? Remember, the forces will be equal, and $\mathrm{F}=\mathrm{ma}$. Setting the two forces equal, you can solve for ω, then divide by 2π to get expected rotations per second.

Test your calculations, with a string and slick glass tube that I can provide. You can try to match the masses exactly, or use what you have, and re-calculate. You can time 10 rotations and then divide the 10 rotations by the time required for 10 rotations to get rotations per second.

Lab write up headings

1. Recommendation
2. Conclusion
3. Procedures
4. Equations (centripetal acceleration)
5. Data.
