\qquad

1. A compact car has a mass of 550 kg . Its engine can provide 1700 N of force. What acceleration will the car experience on a level road?
2. How long will it take for the car to reach $32 \mathrm{~m} / \mathrm{s}$ (71 mph)
3. If 6 people having a combined mass of 400 kg , get in the car, now what acceleration will the car experience on a level road?
4. Now how long will it take for the car to reach $32 \mathrm{~m} / \mathrm{s}$?
5. Two skaters start at rest and push off from each other. The skater with a mass of 75 kg is going $2 \mathrm{~m} / \mathrm{s}$. The other skater has a mass of 50 kg . How fast in meters per second is this other skater going?
6. A 240 g golf club is going $65 \mathrm{~m} / \mathrm{s}$. After it strikes a 55 g ball, it continues at $45 \mathrm{~m} / \mathrm{s}$. How fast in meters per second is the ball going?
7. If my arm is able to accelerate a 0.8 kg baseball at $18(\mathrm{~m} / \mathrm{s}) / \mathrm{s}$. How fast will my arm be able to accelerate a 5 kg shot put?
8. A biker is going into a slickrock dish that is 1.6 m deep. About how fast will he be going at the bottom?
9. Stockton runs 20 meters. As he crosses the 10 m mark, the stopwatch reads 3.4 s (seconds). As he crosses the 20 m mark, the stopwatch reads 5.0 s . What is stockton's average velocity between the 10 m marker and the 20 m marker?

Answers to part B

1. $2.4(\mathrm{~m} / \mathrm{s}) / \mathrm{s}$
2. 13 s
3. $1.5(\mathrm{~m} / \mathrm{s}) / \mathrm{s}$
4. 22 s
5. $3.7 \mathrm{~m} / \mathrm{s}$
6. $73 \mathrm{~m} / \mathrm{s}$
7. $4.8(\mathrm{~m} / \mathrm{s}) / \mathrm{s}$
8. $6.6 \mathrm{~m} / \mathrm{s}$
9. $9.1 \mathrm{~m} / \mathrm{s}$
\qquad
10. A compact car has a mass of 620 kg . Its engine can provide 1500 N of force. What acceleration will the car experience on a level road?
11. How long will it take for the car to reach $32 \mathrm{~m} / \mathrm{s}$ (71 mph)
12. If 6 people having a combined mass of 400 kg , get in the car, now what acceleration will the car experience on a level road?
13. Now how long will it take for the car to reach $32 \mathrm{~m} / \mathrm{s}$?
14. Two skaters start at rest and push off from each other. The skater with a mass of 65 kg is going $2 \mathrm{~m} / \mathrm{s}$. The other skater has a mass of 35 kg . How fast in meters per second is this other skater going?
15. A 200 g golf club is going $65 \mathrm{~m} / \mathrm{s}$. After it strikes a 55 g ball, it continues at $45 \mathrm{~m} / \mathrm{s}$. How fast in meters per second is the ball going?
16. If my arm is able to accelerate a 1.2 kg softball at $20(\mathrm{~m} / \mathrm{s}) / \mathrm{s}$. How fast will my arm be able to accelerate a 5 kg shot put?
17. A biker is going into a slickrock dish that is 2.2 m deep. About how fast will he be going at the bottom?
18. Stockton runs 20 meters. As he crosses the 10 m mark, the stopwatch reads 2.9 s (seconds). As he crosses the 20 m mark, the stopwatch reads 4 s . What is stockton's average velocity between the 10 m marker and the 20 m marker?

Answers to part A

1. $3.1(\mathrm{~m} / \mathrm{s}) / \mathrm{s}$
2. 10 s
3. $1.8(\mathrm{~m} / \mathrm{s}) / \mathrm{s}$
4. 18 s
5. $3 \mathrm{~m} / \mathrm{s}$
6. $87 \mathrm{~m} / \mathrm{s}$
7. $2.9(2.9 \mathrm{~m} / \mathrm{s}) / \mathrm{s}$
$8.5 .7 \mathrm{~m} / \mathrm{s}$
8. $6.3 \mathrm{~m} / \mathrm{s}$
