\qquad

1. When a driver brakes an automobile, friction between the brake disks and the brake pads converts part of the car's translational kinetic energy to internal energy (heat). If a 500 kg automobile traveling at $40 \mathrm{~m} / \mathrm{s}$ comes to a halt after its brakes are applied, how much can the temperature rise in each of the four 2.0 kg brake disks? Assume that the disks are made of metal with $\mathrm{C}=500 \mathrm{~J} / \mathrm{kg} \mathrm{C}$ and that all of the kinetic energy is distributed in equal parts to the internal energy of the brakes
2. A hot water heater is operated by solar power. If the solar collector has an area of 10 square meters and the power delivered by sunlight is $420 \mathrm{~W} /$ square meter, how long will it take to increase the temperature of 1.0 cubic meter of water from 20 degrees C to 50 degrees C ? ($\mathrm{W}=\mathrm{J} / \mathrm{s}$) (Cp of water $\sim 4200 \mathrm{~J} / \mathrm{kg} \mathrm{C}$) (1 cubic cm of water = 1 gram)

Answers to part B

1. Assume all of the kinetic energy is converted to energy as heat to the brake disks. $1 / 2 m_{a} v^{2}=C m_{b} \Delta T$. Solve for $\Delta T . \Delta T=\left(m_{a} v^{2}\right) /\left(2 C m_{b}\right)=$ $(600 \cdot 900) /(2 \cdot 500 \cdot 12)=45$ degrees C.
2. The amount of energy needed to heat the water is $m \cdot C \cdot \Delta T$. Converting the volume to $\mathrm{cm}^{3}, 1 \mathrm{~m}^{3}=\left(10^{2} \mathrm{~cm}\right)^{3}=10^{6} \mathrm{~cm}^{3}$. Each cm^{3} has a mass of 1 g , so the mass is $10^{6} \mathrm{~g} .10^{3} \mathrm{~g}=1 \mathrm{~kg}$, so $10^{6} \mathrm{~g}=10^{3} \mathrm{~kg}$. So the energy needed $=10^{3} \mathrm{~kg} \cdot 4.2 \times 10^{3} \mathrm{j} / \mathrm{kg} \cdot 40$. The collectors collect $420 \mathrm{j} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)$. $12 \mathrm{~m}^{2}$. If I divide the total energy needed by the energy per second available, I find the number of seconds needed to heat this much water to be $3.3 \times 10^{4} \mathrm{~s}$. There are $3600 \mathrm{~s} /$ hour, for a total of 9.3 hours.
\qquad
3. When a driver brakes an automobile, friction between the brake disks and the brake pads converts part of the car's translational kinetic energy to internal energy (heat). If a 600 kg automobile traveling at $30 \mathrm{~m} / \mathrm{s}$ comes to a halt after its brakes are applied, how much can the temperature rise in each of the four 3 kg brake disks? Assume that the disks are made of metal with $\mathrm{C}=500 \mathrm{~J} / \mathrm{kg} \mathrm{C}$ and that all of the kinetic energy is distributed in equal parts to the internal energy of the brakes
4. A hot water heater is operated by solar power. If the solar collector has an area of 12 square meters and the power delivered by sunlight is $420 \mathrm{~W} /$ square meter, how long will it take to increase the temperature of 1.0 cubic meter of water from 23 degrees C to 63 degrees C ? ($\mathrm{W}=\mathrm{J} / \mathrm{s}$) (Cp of water $\sim 4200 \mathrm{~J} / \mathrm{kg} \mathrm{C}$) (1 cubic cm of water = 1 gram)

Answers to part A

1. Assume all of the kinetic energy is converted to energy as heat to the brake disks. $1 / 2 m_{a} v^{2}=C m_{b} \Delta T$. Solve for ΔT. $\Delta T=\left(m_{a} v^{2}\right) /\left(2 C m_{b}\right)=$ $(500 \cdot 1600) /(2 \cdot 500 \cdot 8)=100$ degrees C.
2. The amount of energy needed to heat the water is $m \cdot C \cdot \Delta T$. Converting the volume to $\mathrm{cm}^{3}, 1 \mathrm{~m}^{3}=\left(10^{2} \mathrm{~cm}\right)^{3}=10^{6} \mathrm{~cm}^{3}$. Each cm^{3} has a mass of 1 g , so the mass is $10^{6} \mathrm{~g} .10^{3} \mathrm{~g}=1 \mathrm{~kg}$, so $10^{6} \mathrm{~g}=10^{3} \mathrm{~kg}$. So the energy needed $=10^{3} \mathrm{~kg} \cdot 4.2 \times 10^{3} \mathrm{j} / \mathrm{kg} \cdot 30$. The collectors collect $420 \mathrm{j} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)$. $10 \mathrm{~m}^{2}$. If I divide the total energy needed by the energy per second available, I find the number of seconds needed to heat this much water to be $3.0 \times 10^{4} \mathrm{~s}$. There are $3600 \mathrm{~s} /$ hour, for a total of 8.3 hours.
