SIGNIFICANT FIGURES

Name	
NULLIO	

A cientist must be able to express the accuracy of a number, not just its numerical value. We can determine the accuracy of a number by the number of significant figures it contains.

- 1) All digits 1-9 inclusive are significant.
 - Example: 129 has 3 significant figures.
- 2) Zeros between significant digits are always significant.
 - Example: 5,007 has 4 significant figures.
- 3) Trailing zeros in a number are significant only if the number contains a decimal point.
 - Example: 100.0 has 4 significant figures.
 - 100 has 1 significant figure.
- Zeros in the beginning of a number whose only function is to place the decimal point are not significant.
 - Example: 0.0025 has 2 significant figures.
- 5) Zeros following a decimal significant figure are significant.

Example: 0.000470 has 3 significant figures.

0.47000 has 5 significant figures.

Determine the number of significant figures in the following numbers.

1. 0.02 ____

6. 5,000. ____

2. 0.020 _____

7. 6,051.00 _____

3. 501 _____

8. 0.0005 _____

4. 501.0 ____

9. 0.1020 ____

5. 5,000 ____

10. 10,001 ____

Determine the location of the last significant place value by placing a bar over the digit. (Example: $1.70\overline{0}$)

- 1. 8040 _____
- 6. 90,100
- 2. 0.0300 _____
- 7. 4.7 x 10⁻⁸
- 3. 699.5
- 8. 10,800,000.
- 2.000 x 10²
- 9. 3.01 x 10²¹
- 5. 0.90100 _____
- 10. 0.000410 _____

Chemistry IF8766

9

Oinstructional Fair, Inc.

CALCULATIONS USING SIGNIFICANT FIGURES

When multiplying and dividing, limit and round to the least number of significant figures in any of the factors.

Damair Thatamatte 1.

Example 1: $23.0 \text{ cm } \times 432 \text{ cm } \times 19 \text{ cm} = 188,784 \text{ cm}^3$ The answer is expressed as $190,000 \text{ cm}^3$ since 19 cm has only two significant figures.

When adding and subtracting, limit and round your answer to the least number of decimal places in any of the numbers that make up your answer.

Example 2: $123.25 \, \text{mL} + 46.0 \, \text{mL} + 86.257 \, \text{mL} = 255.507 \, \text{mL}$ The answer is expressed as $255.5 \, \text{mL}$ since $46.0 \, \text{mL}$ has only one decimal place.

Perform the following operations expressing the answer in the correct number of significant figures.

- 1. 1.35 m x 2.467 m = _____
- 2. $1,035 \text{ m}^2 + 42 \text{ m} =$
- 3. 12.01 mL + 35.2 mL + 6 mL = _____
- 4. 55.46 g 28.9 g =
- 5. $.021 \, \text{cm} \times 3.2 \, \text{cm} \times 100.1 \, \text{cm} = \underline{}$
- 6. 0.15 cm + 1.15 cm + 2.051 cm = ____
- 7. $150 L^3 + 4 L = _____$
- 8. 505 kg 450.25 kg = _____
- 9. $1.252 \, \text{mm} \times 0.115 \, \text{mm} \times 0.012 \, \text{mm} =$
- 10. $1.278 \times 10^3 \,\mathrm{m}^2 + 1.4267 \times 10^2 \,\mathrm{m} =$

3

Significant Figures

Use with Appendix B, Significant Figures

Rules for Significant Figures

• All nonzero figures are significant.

↓↓↓ **721** mm

3 significant figures

When a zero falls between nonzero digits, that zero is significant.

106 K

3 significant figures

When a zero falls after the decimal point and after a significant figure, that zero is significant.

1.50 L

3 significant figures

When a zero is used merely to indicate the position of the decimal, that zero is *not* significant.

1 210 m

3 significant figures

0.0**53** m

2 significant figures

6 All counting numbers and exact numbers are treated as if they have an infinite number of significant figures.

10 pairs

infinite number of significant figures

Copynght © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc

MATH HANDBOOK TRANSPARENCY WORKSHEE

(3)

Significant Figures

Use with Appendix B, Significant Figures

1. For each of the measurements in the table below, determine if the underlined number is significant or not significant. Place a check mark in the appropriate box and in the box under the rule that you used to make your determination.

					Rule		
Measurement	Significant	Not Significant	1	2	3	4	5
a. 3 <u>0</u> 38 m							
b. 1.5 <u>6</u> 1 L							_
c. 0. <u>0</u> 74 mm							_
d. 505 <u>0</u> s							_
e. 3. <u>0</u> 07 km							-
f. 6.1 <u>0</u> °C							-
g. 82 <u>1</u> .0 g							-
h. <u>0</u> .560 g							

2	Datarmine the	number of	significant	figures i	in each of	the followin	g measurements.

a	56 m	

b.	1104	mL	
----	------	----	--

•	15 pairs	
	15 pans	

d	0.20 mol	
О.	O ZO HIGH	

e.	105	000 mm	
----	-----	--------	--

f	6.02 L	
	0.02 L	

w.
$$6.12 \times 10^5$$
 mm _____

x.
$$4.01 \times 10^2$$
 s _____

y.
$$60\ 000 \times 10^3 \text{ g}$$

2.
$$1.000 \times 10^2 \text{ kPa}$$

ClassocoMcGraw-Hill, a division of the McGraw-Hill Companies

Significant Figures Practice Worksheet

How many significant figures do the following numbers have?

- 1) 1234 ____
- 2) 0.023 _____
- 3) 890 ____
- 4) 91010 _____
- 5) 9010.0 _____
- 6) 1090.0010 _____
- 7) 0.00120 _____
- 8) 3.4×10^4
- 9) 9.0 x 10⁻³ _____
- 10) 9.010 x 10⁻² _____
- 11) 0.00030 _____
- 12) 1020010 ____
- 13) 780. ____
- 14) 1000 ____
- 15) 918.010 _____
- 16) 0.0001 _____
- 17) 0.00390 _____
- 18) 8120 ____
- 19) 7.991 x 10⁻¹⁰_____
- 20) 72 ____

http://www.chemfiesta.com