Nature of Science

Important Terms to know	
Fact	
Hypothesis	
Law/Principle	
Quantitative -	
Qualitative -	2//
Theory -	
Speculation	
Test	
Conclusion	
Inference -	

I. What is Science?

Scientific Method - __

- a. Defined as: the intellectual and practical activity encompassing the systematic study of the structure and behavior of the physical and natural world through observation and experiment
- b. Interesting Perspectives
 - i. "Our brains have evolved to help us survive within the orders of magnitude of size and speed at which our bodies operate."
 - 1. Richard Dawkins
 - ii. "Science is a way of knowing"
 - 1. Dr. John Armstrong WSU
- II. What it means to KNOW.
 - a. TO KNOW IS TO BEHNAKE OF THROUGH OBSTICUATION, INQUIEN

 When curiosity is emphasized and encouraged the discovery process continues throughout life.

CURIOSITY	Results in	EXPLORATION
EXPLORATION	Results in	DISCOVERS
DISCOVERY	Results in	PLEASURE
PLEASURE	Results in	REPETITION
REPETITION	Results in	MASTERY
MASTERY	Results in	NEW SKILLS
NEW SKILLS	Results in	CONFIDENCE
CONFIDENCE	Results in	SELF ESTEEM
SELF ESTEEM	Results in	SECURITY
STURITY	Results in	MORE EXPLONATION

III	. A N	lore Specific Method	

- a. Science today = "NATURAL PHILOSOPHY"
 - i. The study of unanswered questions about nature.
- b. Branches of Science
 - i. Living-things
 - 1. BIOLOGY
 - 2 BOTANY
 - 3. 200LDGY
 - ii. Non-Living
 - 1. PHYSICS THE MOST BASIC SCIENCE
 - 2. CHEMISTRY
 - 3. GEOLOGY
 - 4. ASTORONOMY
 - iii. THE LANGUAGE OF SCIENCE MATHEMATICS
- IV. The Scientific Method
 - a. RECOGNIZE A PROBLEM
 - b. HYPOTHESIS
 - C. PREDICT
 - d. EXPERIMENT
 - e. CONCLUSION
 - i INFERENCE -

A MORE INFORMAL ORPASIVE TYPE OF CONCLUSION

BASED ON EVIDENCE AND REACONING.

- V. Important Terms and Distinctions
 - a. _______ a close agreement by *competent* observers who make a series of observations of the same phenomenon.
 - b. LANS / PRINCIPLES When hypotheses are tested over and over, never being contradicted or falsified.
 - i. SCIENCE MUST BE ADAPTABLE AND ACCEPT THAT WORTHY EVIDENCE CAN CREATE DRASTIC CHANGE WITHIN THE IDEA OF A HYPOTHESIS, LAW OR PRINCIPLE.

NAME:					
	c. A	THEORY	n a scientific cont	ext is very differer	nt than the
	7	HERRY Which	h people use in ev	eryday speech.	
	T h	he layman would	use the term theo	ry in the same man	nner that a
	u. i	cientist would use	the word Hypor	HESIS	
	3	i Docall the m	eaning of the term	1 HYPOTHES	15
	- /	A scientific	on the	other hand is a sy	nthesis of a
	e. <i>F</i>	arge body of inform	mation that encom	nasses well-tested	d and verified
	1	arge body of filloff aypotheses about o	nation that encon	he natural world.	
	1	hypotheses about o	certain aspects of t	The Hatarar World	
	t.	Hypothesis vs. The	ory		
		i. Hypothesis	- Untesteu	ad varified	
		ii. Theory - ex	tensively tested an	iu vermeu	
	g.	Qualitative data vs	. Quantitative uata	uistic renresentati	on of
		i. QUALITATIV	data - inigi	uistic representati ing bias/high prol	pability of
				ing bias/ingit prot	ability as
		misinterpre	etation)	ectivo numeric ren	resentation of
		ii. QUANTITAT	data - obje	ective numeric rep	Committee
		observation	1.	SOFT ULATION	120
	h.	SCIENTIFIC .	STATEMENT VS	MUST RE TE	STABLE
		i. SCIENTIF	No.	MUST BE TE	cience)
		ii. Specula	monNot	estability (is not se	
VI.	Sci	ence, Art, & Religio All are manifestati	n iona of the coarch (for order and mean	ning in the
	a.		ions of the search	or order and mean	
		world.	Concerned w	ith discovering an	d recording
		natural pho		ith discovering	G
		natural pho	- Concerned wit	h the value of hum	an interactions
		II	tain to the senses.	ii ciic varae er ir	
		as they per	- Concerned wi	th the source, pur	pose, and
		mosning o	f everything.		
	1	A truly educated p	nerson is knowled:	geable about all th	ree domains
	D.	With true unders	tanding all domair	ns can be embrace	d without
	C.	contradiction.	tarrame, an admini		
1711	T	pole of Understandi	ng Science		
VII.	10	ENGUSH SYST	EM - USA (IMPE	RIAL)	
	h	ALTRIC SYST	EM – EVERYONE E	LSE	
	c.	The METRIC	System uses	a base 10 system in	nvolving prefixes
	C.	and base units.	o , a total	•	
		Prefix	Symbol	Factor number	Factor word
		tio tio	k	1000	Thousand
		Mcto	Ch	100	Hundred
		deca	dk	10	Ten
		Base Unit	m, g, L	1	One
	-	de c'i	4	0.1	Tenth

Scanned by CamScanner

NAME:	
	d. Mnemonic for remembering Metric Prefixes e. KIOS HAVE DEOPPED OVER DEAD CONVERTING METRICS
VIII.	Representing the Very Large or the Very Small a. Scientists use what is called Scientific workflow to represent very large measurements, or very small measurements. i. EXAMPLES 1. Mass of a single electron = 9.1 x 10 ⁻³¹ kg
	 2. Mass of the Earth = 5.92 x 10²⁴ kg b. Significant Figures i. A Significant Figure is each digit of a number that are used to express it to the required degree of ACUPACY. starting from the first nonzero digit. ii. RULES
	 Non-zero digits are always significant Any zeros between two significant digits are significant (sandwiched) A Final zero or trailing zeros in the decimal portion ONLY are significant.
	i. Accuracy i. Accuracy - How close a measured value is the ACTUAL (true) VALUE ii. Precision - How close the measured values are to each other.
	ii. Precision – How close the measured values are to