Work It!

Work: the quantity of energy transferred by a force when it is applied to a body and causes that body to move in the direction of force

$$
\begin{aligned}
& \text { Work }=\text { Force } \text { distance } \\
& W=F \cdot \delta \\
& \text { SI Units: Joules (5) }
\end{aligned}
$$

GIN •m=1 Joule

Example 1: Basic...
Bender the robot uses an average force of 5,200 N to lift a girder 5 m . How much work does the Bender do on the girder?

$$
\begin{aligned}
& W=F \cdot d \\
& (5,200 \mathrm{~N})(5 \mathrm{~m}) \\
& =26,000 \text { anon }
\end{aligned}
$$

Example 2: A little trickier...
A mechanic uses a hydraulic lift to raise a 1,200 kg car 1.5 m off the ground. How much work does the lift do on the car?

$$
\begin{gathered}
\omega=F \cdot d \\
(11,7601)(1.5 m) \\
F=m \cdot a .
\end{gathered}
$$

$$
\begin{gathered}
F=m \cdot a \\
\left.(1200 \mathrm{~kg})^{9.8 .81 \mathrm{~s}^{2}}\right)=11,760 \mathrm{~N}
\end{gathered}
$$

Power

Power: a quantity that measures the rate at which work is done

$$
\begin{aligned}
& \text { Power = Work / time } \\
& P=W / t \\
& \text { SI Units: Watts }(W) \\
& \rightarrow \text { units : } 15 / S=(W
\end{aligned}
$$

Example 1: Basic...

Every 2 seconds, the Seal Life Center's OTEC (Ocean Thermal Energy Conversion) system produces enough electricity to do 9,000 J of work by pumping large quantities of deep cold seawater and warm surface seawater to run a power cycle and produce electricity. What is the Sea Life Center's power output?

Example 2: A little trickier...
Anna walks up the stairs on her way to class. She weighs 70 kg and the stairs go up 20 stairs that are 10 cm high each.

$$
=.10 \mathrm{~m}
$$

a. How much work does she do?

$$
\begin{aligned}
W & =F \cdot d \\
& (686 \mathrm{~N})(2 \mathrm{~m}) \\
& =1372 \mathrm{~J}
\end{aligned}
$$

$$
F=m a
$$

$$
(70 \mathrm{~kg})(9.8 \mathrm{~m} / \mathrm{s})
$$

$$
=686 \mathrm{~N}
$$

b. What is her power output if it takes her 10.5 seconds to climb stairs?

