Probability Theory

The probability of getting number " 3 " with one throw?

The probability of getting number " 3 " with double throw?

$$
\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}
$$

Try It! - Coin Flip

1) During a coin toss at a football game, what is the probability of a coin landing heads up?

$$
\frac{1}{2}=50 \%
$$

2) What is the probability of a coin landing heads up 3 times in a row? $1 / 2: 2 \% 1 / 2=1 / 8$

Genotype - genetic makeup of an organism.

1) Homozygous - same allele
2) Heterozygous - different alleles

Allele for tall plant $=\mathrm{T}$; Allele for dwarf plant $=\dagger$

$$
\frac{T t=\text { heterozygous }}{T T=\text { homozygous }}
$$

$$
t t=\text { humor gout }
$$

$T t=t a l l$
TO $=$ tall
$t t=$ swart.

Punnet Squares - Determine the probability of specific genetic traits
\bigcirc dominat orneressive. 1

1) Mono-hybrid cross $=1$ trait

2
2)Di-hybrid cross $=2$ traits

Mono-Hybrid Cross

4) Millhous Van Houten and Lisa Simpson recently attended the Springfield Elementray King of Hearts dance together. Millhouse is homozygous for nearsightedness (meaning that he needs glasses) but Lisa can see fine without glasses. Nearsightedness is a dominant trait. Complete a Punnett Square to show the possibilities that would result if Millhouse and Lisa had children.

a. probability of child needing glasses
$4,4=100 \%$
b. probability of child not needing glasses
0
0,4 \qquad $=0$ \%

Di-Hybrid Cross
4) Millhouse Van Houten and Lisa Simpson recently attended the Springfield Elementary King of Hearts dance together. Millhouse and Lisa both have straight hair. Lisa has yellow hair and Millhouse has blue hair. The following
 Millhouse: Homozygous straight hair $=c c \quad$ Heterozygous blue hair $=\mathrm{Bb}$ Lisa: \quad Homozygous straight hair $=c c \quad$ Homozygous yellow hair $=b b$
a. Cross:
 Cb 5
b. Gametes:
c. Punnett Square:

d. Probability of a blue straight haired child:

Probability of a yellow straight haired child: $\frac{8}{8}=\frac{16}{6}=50.1$.
Probability of a blue curly haired child:

Probability of a yellow straight haired child: \qquad $=16$

$$
c^{\prime} \mathrm{l} y
$$

